环境卫生工程 ›› 2024, Vol. 32 ›› Issue (5): 41-47.doi: 10.19841/j.cnki.hjwsgc.2024.05.007

• 有机固废生物处理与高值化利用 • 上一篇    下一篇

不同原料配比对沼渣和厨余垃圾共堆肥的理化性质和腐熟度的影响

王 峰,孙金浩,刘纹君,陈卫华,田弘毅,炊春萌,谢 冰   

  1. 1.华东师范大学 生态与环境科学学院 上海有机固废生物转化工程技术研究中心;2.上海黎明资源再利用有限公司
  • 出版日期:2024-11-01 发布日期:2024-11-01

Effects of Different Feedstock Ratios on the Physicochemical Properties and Maturity of Co-composting of Digestate and Kitchen Waste

WANG Feng, SUN Jinhao, LIU Wenjun, CHEN Weihua, TIAN Hongyi, CHUI Chunmeng, XIE Bing   

  1. 1. Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University; 2. Shanghai Liming Resources Reuse Co. Ltd.
  • Online:2024-11-01 Published:2024-11-01

摘要: 好氧堆肥是沼渣和厨余垃圾资源化利用的有效途径。将沼渣和厨余垃圾进行协同堆肥可有效改善堆体的理化性质,从而提高堆肥效率,但两者共堆肥的复配比例仍需探究。本研究设置的沼渣与厨余垃圾质量比分别为10.0∶0、7.5∶2.5、5.0∶5.0、2.5∶7.5、0∶10.0,对这5个处理组进行共堆肥,并通过堆肥过程中的理化指标以及最终产物的腐殖化程度作为评价指标,确定厨余垃圾与沼渣共堆肥最佳配比,为提高沼渣和厨余垃圾联合资源化效率提供参考依据。结果表明,沼渣与厨余垃圾质量比为2.5∶7.5时能够较快进入高温期,并在高温期维持7 d,符合GB 7959—2012粪便无害化卫生要求。5个处理组的pH、有机质含量和种子发芽指数均符合NY/T 525—2021有机肥料的要求,且沼渣与厨余垃圾质量比为2.5∶7.5处理堆肥产物中具有更低的水溶性NH4+,表明其具有更小的植物毒性。胡敏酸含量以及胡敏酸与富里酸比值的分析结果表明,沼渣与厨余垃圾质量比2.5∶7.5处理组最终产物的腐殖化程度最高,但其含有较高的Na+和Cl-,在土地应用时应注意盐分对植物的不良影响。综上,沼渣与厨余垃圾质量比2.5∶7.5为两者共堆肥的最佳配比,其腐殖化效率最高,最终产物质量较好,具有较高的土地应用潜力。

关键词: 沼渣, 厨余垃圾, 共堆肥, 腐殖化

Abstract: Aerobic composting is an effective way for resource utilization of digestate and kitchen waste. Co-composting of digestate and kitchen waste can effectively improve the physicochemical properties of the compost pile and thus increase the composting efficiency, but the compounding ratio of the two co-composts still needs to be explored. In this study, five treatment groups were set up for co-composting with the mass ratio of digestate to kitchen waste of 10.0∶0, 7.5∶2.5, 5.0∶5.0, 2.5∶7.5, and 0∶10.0. The physicochemical indexes in the composting process as well as the degree of humification of the final product were used as the evaluation indexes in order to determine the optimal ratio of co-composting of kitchen waste to digestate, which could provide a reference for the improvement of the efficiency of the joint resource utilization of digestate and kitchen waste. The results showed that when the mass ratio of digestate to kitchen waste was 2.5∶7.5, it could enter the high-temperature period quickly and maintain for seven days in the high-temperature period, which met GB 7959—2012 Hygienic Requirements for Harmless Disposal of Night Soil. The pH, organic content, and seed germination index of the five treatments were all in line with the requirements of NY/T 525—2021 Organic Fertilizer. The lower water-soluble NH4+ in the compost product with the mass ratio of digestate to kitchen waste of 2.5∶7.5 indicated that it had less plant toxicity. Results analysis of humic acid content and ratio of humic acid and fulvic acid showed that the final product with mass ratio of digestate to kitchen waste of 2.5∶7.5 had the highest degree of humification, but it contained high levels of Na+ and Cl-, and the adverse effects of salts on plants should be taken into account in land application. In conclusion, the mass ratio of digestate to kitchen waste of 2.5∶7.5 was the optimal ratio for co-composting, which had the highest humification efficiency, the better quality of final product, and a high potential for land application.

Key words: digestate, kitchen waste, co-composting, humification

[1] 马 想, 陈 平, 梁 晶. 两种城市源有机固体废物生物质炭理化特性研究[J]. 环境卫生工程, 2024, 32(4): 29-35.
[2] 周永泉, 李小伟, 邰 俊. 低剂量纸巾添加对餐厨垃圾和厨余垃圾共消化的影响[J]. 环境卫生工程, 2024, 32(4): 36-43.
[3] 肖 绎, 贾维健. 北京市生活垃圾甲烷控制状况与综合利用[J]. 环境卫生工程, 2024, 32(3): 9-15.
[4] 林晓凤. 厨余垃圾干式厌氧发酵过程中的挥发性脂肪酸测定方法研究[J]. 环境卫生工程, 2024, 32(3): 42-46,53.
[5] 欧阳创, 张余镕, 邰 俊, 徐先宝, 薛 罡, 李 响. 沼渣水热炭与沼渣热解炭强化餐厨垃圾厌氧消化对比研究[J]. 环境卫生工程, 2024, 32(3): 47-53.
[6] 张 玉. 西安市农村生活垃圾分类现状与对策研究[J]. 环境卫生工程, 2024, 32(3): 105-109,116.
[7] 田启欢, 高彦达, 宫亚斌, 杜 睿, 王立伦, 姚建刚. 厨余垃圾中高温高效厌氧产沼中试研究[J]. 环境卫生工程, 2024, 32(2): 39-45.
[8] 徐 伟, 高 婷, 殷 进. 厨余垃圾厌氧沼渣热解特性及动力学分析[J]. 环境卫生工程, 2024, 32(1): 37-44.
[9] 张 栋. 厨余垃圾三相有机固渣不同利用方式碳排放分析[J]. 环境卫生工程, 2024, 32(1): 104-109.
[10] 朱远超, 赵子旼, 张劲松. 厨余垃圾和农林废弃物好氧堆肥协同处理碳排放核算——以某镇处理设施为例[J]. 环境卫生工程, 2024, 32(1): 111-115.
[11] 祁光霞, 刘政洋, 夏 怡, 陈思涵, 胡进会, 任连海. 物理组成对厨余垃圾堆肥恶臭组成及排放特征影响[J]. 环境卫生工程, 2023, 31(6): 54-62.
[12] 赵 磊, 李 科, 王亚东, 吴 元, 邵 军, 王立伦. 不同运行工艺下大型生物水解反应器处理厨余垃圾试验研究[J]. 环境卫生工程, 2023, 31(6): 63-68.
[13] 李阳青, 张云霞, 于 淼, 常宝军, 张 凯. 厨余垃圾中温干式厌氧发酵系统调试阶段工况分析[J]. 环境卫生工程, 2023, 31(6): 69-73.
[14] 杨 娜, 王 巧, 吕 凡, 余波平, 徐期勇, 何品晶. 我国家庭厨余垃圾与餐厨垃圾理化性质对比分析——源头分类的影响[J]. 环境卫生工程, 2023, 31(4): 7-16.
[15] 杨 莹, 任晓灵, 王晓燕, 孙 宇, 赖金丽. 北京市家庭厨余垃圾粉碎机应用可行性调研分析[J]. 环境卫生工程, 2023, 31(4): 22-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 天津市城市管理研究中心
津ICP备2022007900号-1   津公网安备 12010302000952号   中央网信办违法和不良信息举报中心
地址:天津市河西区围堤道107号    邮政编码: 300201
电话: 022-28365069 传真: 022-28365080 E-mail: csglwyjs10@tj.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发