环境卫生工程 ›› 2024, Vol. 32 ›› Issue (1): 57-67.doi: 10.19841/j.cnki.hjwsgc.2024.01.009

• 固体废物处理过程衍生污染控制 • 上一篇    下一篇

校园餐厨垃圾初期降解生物气溶胶释放特征及健康风险研究

刘彦君,汤倩格,王 盛,李振坤,王建兵   

  1. 中国矿业大学(北京)化学与环境工程学院
  • 出版日期:2024-03-01 发布日期:2024-03-01

Release Characteristics and Health Risks of Bioaerosol from Initial Degradation of Campus Food Waste

LIU Yanjun, TANG Qiange, WANG Sheng, LI Zhenkun, WANG Jianbing   

  1. School of Chemical & Environmental Engineering, China University of Mining and Technology-Beijing
  • Online:2024-03-01 Published:2024-03-01

摘要: 校园餐厨垃圾处理过程无组织释放的生物气溶胶会对校内学生和工作人员的健康构成潜在威胁。研究采用安德森六级采样器及中流量总悬浮颗粒物采样器采集了某大学餐厨垃圾暂存过程的空气样品,通过培养法和高通量测序法分析了其中的可培养和非培养生物气溶胶。结果表明,餐厨垃圾是重要的生物气溶胶释放源,生物气溶胶中真菌浓度(224.78±27.69)CFU/m3大于细菌浓度(116.95±23.01)CFU/m3且高于环境背景浓度,即细菌环境背景值为(32.80±3.61)CFU/m3、真菌环境背景值为(54.57±17.24)CFU/m3。粒径分布上,细菌气溶胶主要分布在Ⅰ级(≥7.0 μm),真菌气溶胶在Ⅳ级(2.1~3.3 μm)。细菌气溶胶的优势菌门主要有变形菌门(Proteobacteria)和厚壁菌门(Firmicutes),前者气溶胶化水平较高;真菌气溶胶优势菌门主要有子囊菌门(Ascomycota)和担子菌门(Basidiomycota),两者均易气溶胶化。健康风险方面,呼吸与皮肤接触的非致癌健康风险可满足美国环保署规定的最大可接受水平;但假单胞菌属(Pseudomonas)和镰刀菌属(Fusarium)的年感染风险和疾病负担均高于相应的基准值。

关键词: 餐厨垃圾, 生物气溶胶, 群落结构, 气溶胶化指数, 健康风险

Abstract: The unorganized release of bioaerosols from campus food waste posed a potential threat to the health of campus students and staff. In this study, an Anderson six-stage sampler and a medium-flow total suspended particulate sampler were used to collect air samples from the temporary storage process of food waste in the campus. The culturable and non-cultureable bioaerosols were analyzed by culture techniques and high-throughput sequencing. The results showed that food waste was an important source of bioaerosol release, and the concentration of fungi (224.78±27.69) CFU/m3 in bioaerosol was higher than that of bacteria (116.95±23.01) CFU/m3 and environmental background. That is, the bacterial environmental background value was (32.80±3.61) CFU/m3, and the fungal environmental background value was (54.57±17.24) CFU/m3. In terms of particle size distribution, bacterial aerosols were mainly distributed in stage I (≥7.0 μm), and fungal aerosols were in stage IV (2.1~3.3 μm). The dominant phylum of bacterial aerosols mainly included Proteobacteria and Firmicutes. The former had a higher aerosolization level. The dominant phylum of fungal aerosols mainly included Ascomycota and Basidiomycetes, both of which were easily aerosolization. In terms of health risks, the non-carcinogenic health risk of both breathing and skin-contact were within the maximum acceptable level set by the US EPA. However, the annual exposure risk and disease burden of Pseudomonas and Fusarium were higher than the corresponding limits.

Key words: food waste, bioaerosol, community structure, aerosolization index, health risk

[1] 周永泉, 李小伟, 邰 俊. 低剂量纸巾添加对餐厨垃圾和厨余垃圾共消化的影响[J]. 环境卫生工程, 2024, 32(4): 36-43.
[2] 欧阳创, 张余镕, 邰 俊, 徐先宝, 薛 罡, 李 响. 沼渣水热炭与沼渣热解炭强化餐厨垃圾厌氧消化对比研究[J]. 环境卫生工程, 2024, 32(3): 47-53.
[3] 蒋微微, 杨 虹, 印健翔. 动物无害化处理厂恶臭污染特征及健康风险评价[J]. 环境卫生工程, 2024, 32(1): 68-78,86.
[4] 刘 硕, 汪群慧, 李 媛, 马晓宇, 朱文彬, 王锘涵, 孙海曙, 高 明. 餐厨垃圾开放式高效定向乳酸生物转化:微生物群落变化及生物固碳效能分析[J]. 环境卫生工程, 2024, 32(1): 127-127.
[5] 杜学勋, 史晶晶, 张斯颖. 生物强化促进餐厨垃圾高温厌氧消化产甲烷性能的研究[J]. 环境卫生工程, 2023, 31(6): 46-53.
[6] 孟 伟, 于 超, 范晓平, 刘 岩, 褚昭涵, 苏红玉. 东南沿海地区典型餐厨垃圾处理工程设计及运行实例[J]. 环境卫生工程, 2023, 31(5): 28-34.
[7] 杨 娜, 王 巧, 吕 凡, 余波平, 徐期勇, 何品晶. 我国家庭厨余垃圾与餐厨垃圾理化性质对比分析——源头分类的影响[J]. 环境卫生工程, 2023, 31(4): 7-16.
[8] 蓝苑瑗, 吴 松, 王 磊. 物料调理缓解餐厨垃圾厌氧发酵酸化效应及其机制研究[J]. 环境卫生工程, 2023, 31(4): 27-34.
[9] 董成耀, 顾 霞, 赵 磊, 周永泉, 李 响. 餐厨垃圾厌氧生物转化预处理技术研究进展[J]. 环境卫生工程, 2023, 31(3): 24-32.
[10] 杨德坤, 龙吉生, 刘殊嘉. 静脉产业园餐厨垃圾协同处理项目及运行优势分析[J]. 环境卫生工程, 2023, 31(2): 95-100.
[11] 高 振, 马英群, 刘 雨, 汪群慧. 餐饮废油作为碳源用于微生物油脂生产:促进还是抑制?[J]. 环境卫生工程, 2023, 31(2): 125-125.
[12] 屈 阳, 李月中, 朱卫兵, 吴 元, 朱丽可, 王伟平. 回料对餐厨垃圾二步法堆肥处理效果的影响[J]. 环境卫生工程, 2023, 31(1): 16-15.
[13] 徐峥勇, 刘 艳, 李 慧, 冯 伟, 王 恺. 某高速公路服务区餐厨垃圾就地资源化技术研究与示范[J]. 环境卫生工程, 2023, 31(1): 43-48.
[14] 徐明月, 杨 民, 孙海曙, 孟 洁, 李永胜, 高 明, 汪群慧, 吴川福. 多阶段接菌对餐厨垃圾和沼渣共堆肥的影响[J]. 环境卫生工程, 2022, 30(6): 110-110.
[15] 史东晓, 汤晓艳, 陆祥昕, 徐 刚, 陆燕中, 吕 清. 餐厨垃圾有机残渣资源化利用方式比较研究——以常州市餐厨废弃物综合处置项目(一期)为例[J]. 环境卫生工程, 2022, 30(5): 55-59,66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张福泉. 通辽市某垃圾填埋场地下水水质现状评价[J]. 环境卫生工程, 2018, 26(3): 36 -38 .
[2] 袁 松 黄丹丹 段怡彤. 生活垃圾转运站臭气属性特征及不同除臭工艺效果分析[J]. 环境卫生工程, 2018, 26(3): 56 -58 .
[3] 刘 霄. 垃圾焚烧发电厂汽水管道应力分析和支吊架设计的优化[J]. 环境卫生工程, 2018, 26(3): 59 -62 .
[4] 白贤祥 张玉刚. 生活垃圾焚烧厂余热锅炉水冷壁高温腐蚀治理研究[J]. 环境卫生工程, 2018, 26(3): 68 -70 .
[5] 杨森林 王科林 吴善荀 等. 餐厨垃圾处置设施规划中对餐厨垃圾产生量的预测[J]. 环境卫生工程, 2018, 26(3): 87 -90 .
[6] 郑苇刘淑玲李波靳俊平. 禽畜干清粪工艺产生鲜粪的厌氧消化处理技术探讨[J]. 环境卫生工程, 2018, 26(1): 5 -8 .
[7] 王晓燕胡昌夏孙晨阳徐利奇. CJ/T 280—2008塑料垃圾桶通用技术条件标准实施情况解析[J]. 环境卫生工程, 2018, 26(1): 63 -65 .
[8] 朱志军刘文涛. 北京市餐厨垃圾现状调查及减量化路径研究[J]. 环境卫生工程, 2018, 26(1): 66 -69 .
[9] 何晟洪毅干磊. 苏州市建筑垃圾智能化监管平台设计[J]. 环境卫生工程, 2018, 26(1): 77 -79 .
[10] 梁永宽李逸民. 填埋气掺烧天然气发电收益估算——以荣昌填埋气发电厂为例[J]. 环境卫生工程, 2018, 26(1): 80 -83 .
版权所有 © 天津市城市管理研究中心
津ICP备2022007900号-1   津公网安备 12010302000952号   中央网信办违法和不良信息举报中心
地址:天津市河西区围堤道107号    邮政编码: 300201
电话: 022-28365069 传真: 022-28365080 E-mail: csglwyjs10@tj.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发