环境卫生工程 ›› 2024, Vol. 32 ›› Issue (1): 68-78,86.doi: 10.19841/j.cnki.hjwsgc.2024.01.010

• 固体废物处理过程衍生污染控制 • 上一篇    下一篇

动物无害化处理厂恶臭污染特征及健康风险评价

蒋微微,杨 虹,印健翔   

  1. 1.上海市动物无害化处理中心;2. 上海建科环境技术有限公司
  • 出版日期:2024-03-01 发布日期:2024-03-01

Odor Pollution Characterization and Health Risk Assessment of An Animal Innocuous Treatment Plant

JIANG Weiwei,YANG Hong,YIN Jianxiang   

  1. 1.Shanghai Municipal Animal Innocuous Treatment Centre; 2. Shanghai Jianke Environmental Technology Co. Ltd.
  • Online:2024-03-01 Published:2024-03-01

摘要: 基于上海市某动物无害化处理厂恶臭产生源、排气筒和厂界的恶臭物质监测数据,探究无害化处理厂的恶臭污染特征,并进一步评估其对周边环境和人体健康的影响。结果表明:臭气主要来源于动物尸体腐败(焚烧车间)及污水处理微生物活动(污水站)。恶臭物质主要为硫化氢(H2S)、氨(NH3)、二甲二硫和甲硫醇(最大浓度分别为5.710、2.462、0.659、0.292 mg/m3)。焚烧车间是主要的NH3贡献源,污水站是主要的H2S贡献源。排气筒和厂界恶臭物质浓度均满足DB 31/1025—2016恶臭(异味)污染物排放标准的限值要求。处理厂的主要致臭因子为H2S、甲硫醇、二甲二硫和NH3(最大阈稀释倍数分别为9 154、1 496、57和50)。对比监测数据发现,排气筒和厂界主要致臭因子存在除NH3、H2S和甲硫醇外的其他未纳入例行监测的低嗅阈值物质,后续应考虑增加例行监测因子和监测频次以更好地监控恶臭排放及影响情况。处理厂车间内环境恶臭物质浓度虽然低于职业接触限值,但仍存在非致癌风险(风险指数为4.481~1 956.440),应对车间内的有限空间严格管控,作业人员在进入时须配置防护装备,保障废气处理设施正常运行,防止泄漏,防范工作人员健康风险。

关键词: 动物无害化处理, 焚烧, 恶臭污染物, 健康风险

Abstract: Based on the monitoring data of odor generation sources, discharge outfalls and boundaries of an animal innocuous treatment plant in Shanghai, its odor pollution characteristics were explored and its impact on the surrounding environment and human health was further evaluated. The results showed that the main sources of odor were the corruption of animal carcasses (incineration workshop) and the microbial activities of sewage treatment (sewage station). The main odor pollutants were hydrogen sulfide (H2S), ammonia (NH3), dimethyl disulfide (C2H6S2) and methanethiol (CH3SH), with the maximum source contents of 5.710, 2.462, 0.659 and 0.292 mg/m3, respectively. The incineration workshop was the major contributor of NH3, while the sewage station was the major contributor of H2S. The contents at the outfalls and boundaries satisfied the standards of DB 31/1025—2016 Emission Standards of Odor Pollutants. The main odor-causing factors were H2S, CH3SH, C2H6S2 and NH3, with the maximum threshold dilution times of 9 154, 1 496, 57 and 50, respectively. Comparison of the monitoring data revealed that there were low olfactory threshold factors other than NH3, H2S and CH3SH at the outfalls and boundaries, which were not included in the routine monitoring program. Subsequent consideration should be given to increasing the routine monitoring factors and monitoring frequency to better monitor the odor emission and its impact. Although the odor substance contents in the workshop were lower than the occupational exposure limit, non-carcinogenic risks were identified with the risk index ranged from 4.481 to 1 956.440. The limited space in the workshop should be strictly controlled, and incoming operators should be equipped with protective equipment. The normal operation of the waste gas treatment facilities must be ensured, preventing leakage and protecting health risks from staff.

Key words: animal innocuous treatment, incineration, odor pollutants, health risk

[1] 吕烨佳, 张 佳, 岳 阳, 钱光人. 焚烧飞灰深度资源化技术进展及展望[J]. 环境卫生工程, 2024, 32(4): 1-8.
[2] 田 伟, 陈 琮, 彭 莉, 陈玉成. 垃圾焚烧飞灰及其固化/稳定化产物的重金属污染特征及环境风险评估[J]. 环境卫生工程, 2024, 32(4): 9-16.
[3] 陈 璐, 杨德坤, 龙吉生. 一体化烟气净化工艺对生活垃圾焚烧厂多污染物协同脱除特性的研究[J]. 环境卫生工程, 2024, 32(4): 51-57.
[4] 王延涛, 龙吉生, 秦 峰. 生活垃圾焚烧发电厂设计参数与焚烧负荷变化的统计分析[J]. 环境卫生工程, 2024, 32(4): 58-62,71.
[5] 黄 华, 黄正鹏, 沈元鹏, 李 浓. 生活垃圾焚烧厂渗滤液全量化处理技术研究[J]. 环境卫生工程, 2024, 32(4): 78-82.
[6] 邹 昕. 中国垃圾焚烧标准回顾与分析[J]. 环境卫生工程, 2024, 32(4): 97-104,111.
[7] 段盼巧, 刘晶昊, 白良成. 生活垃圾焚烧项目可靠性评价分析[J]. 环境卫生工程, 2024, 32(4): 112-116.
[8] 李俊成, 毛梦梅, 龙吉生. 掺烧污泥对垃圾焚烧发电厂烟气净化系统的影响——以某污泥协同焚烧项目为例[J]. 环境卫生工程, 2024, 32(3): 54-58.
[9] 陈海军, 许 睿, 赵景才, 龙吉生. 垃圾焚烧发电厂变频给水泵运行改造节能分析[J]. 环境卫生工程, 2024, 32(3): 59-63.
[10] 邱清文. 填埋场生活垃圾焚烧飞灰的土力学特性[J]. 环境卫生工程, 2024, 32(3): 84-89.
[11] 邓飞飞, 张栋棚, 郑仁栋, 周纬南, 吴迪迪, 吕媛媛. 杭州市生活垃圾焚烧厂渗滤液季节性变化特征研究[J]. 环境卫生工程, 2024, 32(3): 90-93.
[12] 柳 青, 马云峰, 陈潇玲, 李文翰, 许 辉, 靳翔蛟, 易 鹏. 浅析省域生活垃圾焚烧企业精细化管理影响因素——以浙江省为例[J]. 环境卫生工程, 2024, 32(3): 110-116.
[13] 王天娇, 李 敏, 王 乾, 苗宪宝, 徐 林, 李义华. 生活垃圾焚烧、填埋及污水处理中长时间碳排放水平研究[J]. 环境卫生工程, 2024, 32(2): 75-84.
[14] 陆广博, 罗院生, 艾 扬, 李 松. 北京市某生活垃圾焚烧厂应急处置涉疫生活垃圾案例分析[J]. 环境卫生工程, 2024, 32(1): 45-49.
[15] 刘天璐, 张艳春, 刘 强, 秦 谋, 李 浩, 张 君. 生活垃圾焚烧飞灰冷顶电熔融技术应用探究[J]. 环境卫生工程, 2024, 32(1): 50-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张福泉. 通辽市某垃圾填埋场地下水水质现状评价[J]. 环境卫生工程, 2018, 26(3): 36 -38 .
[2] 袁 松 黄丹丹 段怡彤. 生活垃圾转运站臭气属性特征及不同除臭工艺效果分析[J]. 环境卫生工程, 2018, 26(3): 56 -58 .
[3] 刘 霄. 垃圾焚烧发电厂汽水管道应力分析和支吊架设计的优化[J]. 环境卫生工程, 2018, 26(3): 59 -62 .
[4] 白贤祥 张玉刚. 生活垃圾焚烧厂余热锅炉水冷壁高温腐蚀治理研究[J]. 环境卫生工程, 2018, 26(3): 68 -70 .
[5] 杨森林 王科林 吴善荀 等. 餐厨垃圾处置设施规划中对餐厨垃圾产生量的预测[J]. 环境卫生工程, 2018, 26(3): 87 -90 .
[6] 郑苇刘淑玲李波靳俊平. 禽畜干清粪工艺产生鲜粪的厌氧消化处理技术探讨[J]. 环境卫生工程, 2018, 26(1): 5 -8 .
[7] 王晓燕胡昌夏孙晨阳徐利奇. CJ/T 280—2008塑料垃圾桶通用技术条件标准实施情况解析[J]. 环境卫生工程, 2018, 26(1): 63 -65 .
[8] 朱志军刘文涛. 北京市餐厨垃圾现状调查及减量化路径研究[J]. 环境卫生工程, 2018, 26(1): 66 -69 .
[9] 何晟洪毅干磊. 苏州市建筑垃圾智能化监管平台设计[J]. 环境卫生工程, 2018, 26(1): 77 -79 .
[10] 梁永宽李逸民. 填埋气掺烧天然气发电收益估算——以荣昌填埋气发电厂为例[J]. 环境卫生工程, 2018, 26(1): 80 -83 .
版权所有 © 天津市城市管理研究中心
津ICP备2022007900号-1   津公网安备 12010302000952号   中央网信办违法和不良信息举报中心
地址:天津市河西区围堤道107号    邮政编码: 300201
电话: 022-28365069 传真: 022-28365080 E-mail: csglwyjs10@tj.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发