环境卫生工程 ›› 2025, Vol. 33 ›› Issue (1): 130-139.doi: 10.19841/j.cnki.hjwsgc.2025.01.018

• 固体废物处理生命周期评价与碳足迹 • 上一篇    下一篇

湛江市生活垃圾运输环节温室气体量化与减排潜力研究

郭凯怡,丁子航,文思杰,李 欢,刘建国,魏军晓   

  1. 1.广东海洋大学 化学与环境学院;2. 清华大学 深圳国际研究生院;3. 清华大学 环境学院
  • 出版日期:2025-03-04 发布日期:2025-03-04

Study on Greenhouse Gas Quantification and Emission Reduction Potentials in Municipal Solid Waste Transportation in Zhanjiang City

GUO Kaiyi, DING Zihang, WEN Sijie, LI Huan, LIU Jianguo, WEI Junxiao   

  1. 1. School of Chemistry and Environment, Guangdong Ocean University; 2. Tsinghua Shenzhen International Graduate School, Tsinghua University; 3. School of Environment, Tsinghua University
  • Online:2025-03-04 Published:2025-03-04

摘要: 城市生活垃圾焚烧已成为我国垃圾行业温室气体排放的主要来源,而对于运输过程中的温室气体排放特别是中小城市却关注较少。中小城市由于较慢的技术革新和不规范的管理可能引起较多的运输频次,从而造成较高的温室气体排放。为量化湛江市区生活垃圾收运环节运输车辆的温室气体排放情况和减排潜力,结合湛江市区的实际运输情况,基于《2006 IPCC Guidelines for National Greenhouse Gas Inventories》构建了温室气体排放核算模型,同时借助蒙特卡洛模拟方法进行变量模拟。结果表明:湛江市区生活垃圾收运环节运输车辆的温室气体排放量(以CO2计)为5.20~5.44 t/d,碳排放当量(以 CO2计)为3.47~3.63 kg/t,且其随着运输里程的增加显著增加。湛江市区生活垃圾运输环节的温室气体减排潜力较大,未来可通过路径优化、合理选址和建设垃圾转运站及处理设施、应用信息化收运管理系统、投运清洁能源垃圾转运车等措施来降低温室气体排放量。以赤坎区为例,若全部垃圾转运车更换为大型纯电动转运车,则温室气体减排量可达86.52%,运营5 a后使用成本将减少3 188万元。本研究可为优化生活垃圾运输路径和制定相关环境管理策略提供科学依据。

关键词: 生活垃圾, 收运, 温室气体, 运输成本, 减排

Abstract: Municipal solid waste incineration has become a major source of greenhouse gas (GHG) emissions in China’s MSW treatment sector, while the GHG emissions during the transportation process have received less attention, especially in small and medium-sized cities. The slower pace of technological innovation and non-standard management in these cities may lead to higher GHG emissions due to unreasonable transportation routes and frequencies. To quantify the GHG emissions and reduction potential of transportation vehicles in the MSW collection and transportation link of Zhanjiang city, a GHG emission accounting model based on the actual transportation situation in Zhanjiang city was constructed, in accordance with 2006 IPCC Guidelines for National Greenhouse Gas Inventories, and the Monte Carlo simulation method was used for variable simulation. The results indicated that the GHG emissions from transportation vehicles of MSW collection and transportation chain in Zhanjiang city ranged from 5.20 t/d to 5.44 t/d, and carbon emission equivalent was 3.47-3.63 kg/t, which significantly increasing with the transportation distance. There is a considerable potential for GHG emission reduction in MSW transportation of Zhanjiang city. In the future, GHG emissions can be reduced through measures such as route optimization, rational siting, construction of MSW transfer stations and treatment facilities, application of information-based collection and transportation management systems, and commissioning clean-energy MSW transfer vehicles. Taking Chikan district as an example, if all MSW transfer vehicles are replaced with large-scale new energy-pure electric transfer vehicles, the reduction of GHG emissions can reach 86.52%, and the cost of using the transfer vehicles will be reduced by 31.88 million yuan after five years of operation. This study provides a scientific basis for optimizing MSW transportation routes and developing associated environmental management strategies.

Key words: municipal solid waste, collection and transportation, greenhouse gas, transportation costs, emission reduction

[1] 齐佳楠, 周 硕, 宁 庆, 王 欢, 李 兵, 刘海威. 我国县域生活垃圾制备固体回收燃料工艺的技术经济性分析[J]. 环境卫生工程, 2025, 33(1): 23-31.
[2] 严浩文, 张 蓓, 王志强, 龙吉生, 金兴乾, 郭欣维. 生活垃圾焚烧发电项目烟气再循环技术工程实践与分析[J]. 环境卫生工程, 2025, 33(1): 98-102.
[3] 王 川, 王慧爽, 邰 俊, 毕珠洁, 范帅康, 宋小龙. 源头分类对生活垃圾处理碳排放和减排效果的影响研究——以上海市干湿垃圾分类为例[J]. 环境卫生工程, 2025, 33(1): 140-140.
[4] 周白玉, 任 怡, 杜春燕, 朱 浩, 曹立民, 郭旭辉, 陈立坚, 韩智勇. 生活垃圾处理处置过程碳排放特征与碳达峰管理策略——基于成都市垃圾和填埋气产生实测数据的比较[J]. 环境卫生工程, 2024, 32(6): 10-19.
[5] 梁智飞, 祝雄涛. 注氧稳定化预处理技术在生活垃圾卫生填埋场存量垃圾开挖中的应用[J]. 环境卫生工程, 2024, 32(6): 90-95.
[6] 丁 琮. 华南某市近10年终端生活垃圾组分与特性分析[J]. 环境卫生工程, 2024, 32(5): 36-40.
[7] 李剑颖, 任晓灵, 王晓燕, 赖金丽. 餐厨废弃油脂制生物柴油全生命周期碳排放分析研究[J]. 环境卫生工程, 2024, 32(5): 48-54.
[8] 陈 华, 何耀忠, 刘 帅, 刘 畅, 杨嘉杰. 大型生活垃圾填埋场阶段性封场综合整治工程——以广东省某市生活垃圾填埋场为例[J]. 环境卫生工程, 2024, 32(5): 93-98.
[9] 盛 宴, 林焕生, 杜月林, 丁前绅, 刘 磊. 填埋龄期及压实度对垃圾腐殖土力学性质的影响[J]. 环境卫生工程, 2024, 32(5): 104-111.
[10] 陈 璐, 杨德坤, 龙吉生. 一体化烟气净化工艺对生活垃圾焚烧厂多污染物协同脱除特性的研究[J]. 环境卫生工程, 2024, 32(4): 51-57.
[11] 黄 华, 黄正鹏, 沈元鹏, 李 浓. 生活垃圾焚烧厂渗滤液全量化处理技术研究[J]. 环境卫生工程, 2024, 32(4): 78-82.
[12] 黄淑娟, 李 航. 城市生活垃圾处理费计取方法及实施条件研究[J]. 环境卫生工程, 2024, 32(4): 105-111.
[13] 彭晓为, 唐玉婷, 钟日钢, 余昭胜, 林 延, 吴 浩. 碳减排约束下不同能源类型垃圾转运车适用性竞争力分析——以深圳市为例[J]. 环境卫生工程, 2024, 32(3): 1-8.
[14] 肖 绎, 贾维健. 北京市生活垃圾甲烷控制状况与综合利用[J]. 环境卫生工程, 2024, 32(3): 9-15.
[15] 张 玉. 西安市农村生活垃圾分类现状与对策研究[J]. 环境卫生工程, 2024, 32(3): 105-109,116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 天津市城市管理研究中心
津ICP备2022007900号-1   津公网安备 12010302000952号   中央网信办违法和不良信息举报中心
地址:天津市河西区围堤道107号    邮政编码: 300201
电话: 022-28365069 传真: 022-28365080 E-mail: csglwyjs10@tj.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发