Environmental Sanitation Engineering ›› 2024, Vol. 32 ›› Issue (4): 36-43.doi: 10.19841/j.cnki.hjwsgc.2024.04.006

Previous Articles     Next Articles

The Effects of Low-dosage Paper Addition on Co-Digestion of Food Waste and Kitchen Waste

ZHOU Yongquan, LI Xiaowei, TAI Jun   

  1. 1. Shanghai Environmental Sanitation Engineering Design Institute Co. Ltd.; 2. School of Environment and Chemical Engineering, Shanghai University; 3. Shanghai Environment Group Co. Ltd.
  • Online:2024-08-30 Published:2024-08-30

Abstract: With the implementation of waste classification, the generation amount of wet waste has been increasing. The wet waste mainly consists of household kitchen waste and food waste, both often treated by anaerobic digestion. During the waste sorting process, some paper towels may be mixed with wet waste and enter the anaerobic digestion system. The impact of low-dosage paper (5%, measured in TS) on subsequent individual and co-anaerobic digestion of kitchen waste and food waste was investigated. The results showed that the addition of paper increased the cumulative biogas production by 5.8% and 4.5% for kitchen waste and co-digestion groups, respectively. It also promoted an increase in NH4+-N concentration and pH recovery. In addition, it caused an increase in the relative abundance of cellulose-degrading bacteria, promoting the degradation of cellulose in the paper. Therefore, the mixture of some paper towels could promote the anaerobic biogas production performance of wet waste, so it may not be necessary to completely remove paper during waste classification process.

Key words: waste classification, food waste, kitchen waste, anaerobic digestion, paper towels

[1] MA Xiang, CHEN Ping, LIANG Jing. A Study on the Physical and Chemical Characteristics of Biochar from Two Kinds of Municipal Organic Solid Waste [J]. Environmental Sanitation Engineering, 2024, 32(4): 29-35.
[2] XIAO Yi, JIA Weijian. Methane Control Status and Comprehensive Utilization of Domestic Waste in Beijing [J]. Environmental Sanitation Engineering, 2024, 32(3): 9-15.
[3] LIN Xiaofeng. Study on the Determination Method of Volatile Fatty Acids in Dry Anaerobic Fermentation of Kitchen Waste [J]. Environmental Sanitation Engineering, 2024, 32(3): 42-46,53.
[4] OUYANG Chuang, ZHANG Yurong, TAI Jun, XU Xianbao, XUE Gang, LI Xiang. Comparative Study on Anaerobic Digestion of Food Waste Enhanced by Biogas Residue Hydrochar and Biogas Residue Pyrochar [J]. Environmental Sanitation Engineering, 2024, 32(3): 47-53.
[5] ZHANG Yu. Research on the Current Situation and Countermeasures of Rural Domestic Waste Classification in Xi’an [J]. Environmental Sanitation Engineering, 2024, 32(3): 105-109,116.
[6] TIAN Qihuan, GAO Yanda, GONG Yabin, DU Rui, WANG Lilun, YAO Jiangang. A Pilot Study on Efficient Anaerobic Biogas Production of Kitchen Waste Under Intermediate Temperature [J]. Environmental Sanitation Engineering, 2024, 32(2): 39-45.
[7] XU Wei, GAO Ting, YIN Jin. Characterization and Kinetic Analysis of Pyrolysis of Anaerobic Digestate from Kitchen Waste [J]. Environmental Sanitation Engineering, 2024, 32(1): 37-44.
[8] LIU Yanjun, TANG Qiange, WANG Sheng, LI Zhenkun, WANG Jianbing. Release Characteristics and Health Risks of Bioaerosol from Initial Degradation of Campus Food Waste [J]. Environmental Sanitation Engineering, 2024, 32(1): 57-67.
[9] HE Yi, ZHONG Aijun, LI Xiangping. Research on High Performance Paths for the Classification and Management of Domestic Waste in Urban Communities:Based on a Qualitative Comparative Analysis of 100 Communities in Beijing [J]. Environmental Sanitation Engineering, 2024, 32(1): 87-93,98.
[10] ZHANG Dong. Analysis of Carbon Emissions in Different Treatment Process of Three-phase Organic Residues from Food Waste [J]. Environmental Sanitation Engineering, 2024, 32(1): 104-109.
[11] ZHU Yuanchao, ZHAO Zimin, ZHANG Jinsong. Caculation of Carbon Emission During Co-composting of Food Waste and Agricultural Waste and Garden Waste: A Case Study of A Treatment Facility in Town [J]. Environmental Sanitation Engineering, 2024, 32(1): 111-115.
[12] DU Xuexun, SHI Jingjing, ZHANG Siying. Study on Bioaugmentation to Promote Methanogenic Performance of Thermophilic Anaerobic Digestion of Food Waste [J]. Environmental Sanitation Engineering, 2023, 31(6): 46-53.
[13] QI Guangxia, LIU Zhengyang, XIA Yi, CHEN Sihan, HU Jinhui , REN Lianhai. The Impact of Physical Composition on the Composition and Emission Characteristics of Odorous Pollutants During Food Waste Composting [J]. Environmental Sanitation Engineering, 2023, 31(6): 54-62.
[14] ZHAO Lei, LI Ke, WANG Yadong, WU Yuan, SHAO Jun, WANG Lilun. Experimental Study on the Treatment of Kitchen Waste with Large Scale Bio-hydrolysis Reactor Under Different Operating Processes [J]. Environmental Sanitation Engineering, 2023, 31(6): 63-68.
[15] LI Yangqing, ZHANG Yunxia, YU Miao, CHANG Baojun, ZHANG Kai. Analysis of Operating Conditions During the Debugging Phase of the Medium Temperature Dry Anaerobic Fermentation System for Kitchen Waste [J]. Environmental Sanitation Engineering, 2023, 31(6): 69-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . Status Evaluation of Groundwater Quality of A Waste Landfill Site in Tongliao   [J]. Environmental Sanitation Engineering, 2018, 26(3): 36 -38 .
[2] . Analysis on Characteristics of Stench and Effect of Different Deodorization Processes in Domestic Refuse Transfer#br# Station   [J]. Environmental Sanitation Engineering, 2018, 26(3): 56 -58 .
[3] . Stress Analysis of Steam-water Pipes and Optimized Design of Support-hangers in Waste Incineration Power Plant   [J]. Environmental Sanitation Engineering, 2018, 26(3): 59 -62 .
[4] . Research on Treatment of Water-wall High Temperature Corrosion of Waste Heat Boiler in Municipal Solid Waste#br# Incinerator   [J]. Environmental Sanitation Engineering, 2018, 26(3): 68 -70 .
[5] . Prediction on Generation Quantity of Food Waste in Planning of Kitchen Waste Disposal Facilities   [J]. Environmental Sanitation Engineering, 2018, 26(3): 87 -90 .
[6] . [J]. Environmental Sanitation Engineering, 2018, 26(1): 5 -8 .
[7] . [J]. Environmental Sanitation Engineering, 2018, 26(1): 63 -65 .
[8] . [J]. Environmental Sanitation Engineering, 2018, 26(1): 66 -69 .
[9] . [J]. Environmental Sanitation Engineering, 2018, 26(1): 77 -79 .
[10] . [J]. Environmental Sanitation Engineering, 2018, 26(1): 80 -83 .
Copyright © Environmental Sanitation Engineering
Address: 107#, Weidi Road, Tianjin, P.R.C.    Postcode: 300201
Telephone: 022-28365069   Fax: 022-28365080 E-mail: csglwyjs10@tj.gov.cn
Supported by:Beijing Magtech