环境卫生工程 ›› 2025, Vol. 33 ›› Issue (3): 90-96.doi: 10.19841/j.cnki.hjwsgc.2025.03.012

• 固体废物源特征与收运系统 • 上一篇    下一篇

垃圾分类背景下广州市可回收物组分与特性研究

高 慧   

  1. 广州市城市管理技术研究中心
  • 出版日期:2025-07-01 发布日期:2025-07-01

Research on the Components and Characteristics of Recyclable Materials in Guangzhou City Under the Background of Domestic Waste Classification

GAO Hui   

  1. Guangzhou City Management Technical Research Center
  • Online:2025-07-01 Published:2025-07-01

摘要: 资源回收利用是“无废城市”建设中的关键一环,而可回收物的回收利用是垃圾分类工作中的短板。以典型区域为切入点,通过现场调研、实验分析等方式,研究居民生活垃圾中可回收物产生及分类情况,分析其组分及理化特性等。结果表明:近10年广州市进入环卫清运系统生活源垃圾组分中的可回收物占比(9.9%~24.5%)在波动变化中逐渐降低,其中高值可回收物均值为6.73%,低值可回收物波动下降。2021—2023年,G街道年生活垃圾产生量中高值可回收物占比(21.20%~33.34%)逐年升高,低值可回收物占比逐年降低;G街道黑桶中按垃圾分类组分分析,可回收物占比由23.73%降至15.80%,其中纸皮类、塑胶、金属均逐年降低;按物理组分分析,橡塑类(28.58%~31.28%)含量较高,纸类和玻璃类略升高;6类样品理化特性显示,废纸类含水率(38.94%±3.30%)最高,塑料袋和塑胶干基高位热值高于生活垃圾均值,塑料袋和纸皮类的灰分较高,其他4类均在1.00%左右;塑料袋的Pb和Hg含量(以干基计)最高,分别为(11.75±6.18)、(0.063±0.086) mg/kg;织物的总Cr、As含量最高,塑料袋、织物等混入终端焚烧会加重飞灰、炉渣的重金属毒性。本研究结果可为可回收物选择合适的回收处理方式提供参考依据,提升其回收率及经济价值,助力“无废城市”建设。

关键词: 可回收物, 组分, 理化特性, 生活垃圾, 广州

Abstract: Resource recycling and utilization is a key link in the construction of a “zero-waste city”, while the recycling and utilization of recyclable materials is a shortcoming in the work of waste classification. Taking typical areas as the entry point, through on-site investigation, experimental analysis and other methods, the generation and classification of recyclable materials in residents’ domestic waste were studied, and their components, physical and chemical properties were analyzed. The results indicated that the proportion of recyclable materials (9.9%-24.5%) in the components of domestic waste in Guangzhou’s sanitation collection system has gradually decreased over the past 10 years, with high-value recyclables averaging 6.73% and low-value recyclables exhibiting a decreasing trend. From 2021 to 2023, the proportion of high-value recyclables in domestic waste generated in G street (21.20%-33.34%) has been increasing year by year, while the proportion of low-value recyclables has decreased. According to the analysis of waste classification components in the black bins of G street, the proportion of recyclable materials has decreased from 23.73% to 15.80%, with paper, plastic, and metal all decreasing year by year. Regarding physical composition, the content of rubber and plastic (28.58%-31.28%) was relatively high, while the proportions of paper and glass were slightly higher.The physicochemical analysis of six waste categories showed that waste paper had the highest moisture content (38.94%±3.30%), while the high calorific value of plastic bags and plastics dry basis was higher than the average value of domestic waste. The ash content of plastic bags and paper scraps was relatively high, while the other four categories remained around 1.00%. The concentrations of Pb and Hg (on a dry basis) in plastic bags were the highest, measured at (11.75±6.18) mg/kg and (0.063±0.086) mg/kg, respectively. The total Cr and As contents of fabrics was the highest, and the mixture of plastic bags, fabrics and other materials into terminal incineration would increase the heavy metal toxicity of fly ash and slag. The results of this study can provide reference for selecting appropriate recycling methods for recyclable materials, while improving their recycling rate and economic value, and assisting in the construction of a “zero-waste city”.

Key words: recyclable materials, component, physical and chemical properties, domestic waste, Guangzhou

[1] 邱清文. 生活垃圾焚烧飞灰填埋场岩土工程设计建议[J]. 环境卫生工程, 2025, 33(3): 64-69.
[2] 朱远超, 王晓燕, 王 超. 基于已有可回收物中转站的布局优化研究——以北京市朝阳区为例[J]. 环境卫生工程, 2025, 33(3): 82-89,96.
[3] 段盼巧, 李雅昕, 白良成. 生活垃圾焚烧厂白烟来源及控制研究[J]. 环境卫生工程, 2025, 33(3): 102-106,113.
[4] 付 铠, 白 旭, 史佳雨, 钱鑫鑫, 刘 璐, 周亚倩, 王鹤立. 基于全流程的生活垃圾焚烧温室气体排放核算[J]. 环境卫生工程, 2025, 33(2): 12-18.
[5] 戚晓波, 易 鹏, 马云峰, 林晓青. 大比例掺烧典型工业固废对生活垃圾焚烧炉燃烧特性的影响研究[J]. 环境卫生工程, 2025, 33(2): 1-11.
[6] 齐佳楠, 周 硕, 宁 庆, 王 欢, 李 兵, 刘海威. 我国县域生活垃圾制备固体回收燃料工艺的技术经济性分析[J]. 环境卫生工程, 2025, 33(1): 23-31.
[7] 严浩文, 张 蓓, 王志强, 龙吉生, 金兴乾, 郭欣维. 生活垃圾焚烧发电项目烟气再循环技术工程实践与分析[J]. 环境卫生工程, 2025, 33(1): 98-102.
[8] 郭凯怡, 丁子航, 文思杰, 李 欢, 刘建国, 魏军晓. 湛江市生活垃圾运输环节温室气体量化与减排潜力研究[J]. 环境卫生工程, 2025, 33(1): 130-139.
[9] 王 川, 王慧爽, 邰 俊, 毕珠洁, 范帅康, 宋小龙. 源头分类对生活垃圾处理碳排放和减排效果的影响研究——以上海市干湿垃圾分类为例[J]. 环境卫生工程, 2025, 33(1): 140-140.
[10] 周白玉, 任 怡, 杜春燕, 朱 浩, 曹立民, 郭旭辉, 陈立坚, 韩智勇. 生活垃圾处理处置过程碳排放特征与碳达峰管理策略——基于成都市垃圾和填埋气产生实测数据的比较[J]. 环境卫生工程, 2024, 32(6): 10-19.
[11] 梁智飞, 祝雄涛. 注氧稳定化预处理技术在生活垃圾卫生填埋场存量垃圾开挖中的应用[J]. 环境卫生工程, 2024, 32(6): 90-95.
[12] 丁 琮. 华南某市近10年终端生活垃圾组分与特性分析[J]. 环境卫生工程, 2024, 32(5): 36-40.
[13] 陈 华, 何耀忠, 刘 帅, 刘 畅, 杨嘉杰. 大型生活垃圾填埋场阶段性封场综合整治工程——以广东省某市生活垃圾填埋场为例[J]. 环境卫生工程, 2024, 32(5): 93-98.
[14] 盛 宴, 林焕生, 杜月林, 丁前绅, 刘 磊. 填埋龄期及压实度对垃圾腐殖土力学性质的影响[J]. 环境卫生工程, 2024, 32(5): 104-111.
[15] 陈 璐, 杨德坤, 龙吉生. 一体化烟气净化工艺对生活垃圾焚烧厂多污染物协同脱除特性的研究[J]. 环境卫生工程, 2024, 32(4): 51-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 天津市城市管理研究中心
津ICP备2022007900号-1   津公网安备 12010302000952号   中央网信办违法和不良信息举报中心
地址:天津市河西区围堤道107号    邮政编码: 300201
电话: 022-28365069 传真: 022-28365080 E-mail: csglwyjs10@tj.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发