Environmental Sanitation Engineering ›› 2024, Vol. 32 ›› Issue (1): 57-67.doi: 10.19841/j.cnki.hjwsgc.2024.01.009

Previous Articles     Next Articles

Release Characteristics and Health Risks of Bioaerosol from Initial Degradation of Campus Food Waste

LIU Yanjun, TANG Qiange, WANG Sheng, LI Zhenkun, WANG Jianbing   

  1. School of Chemical & Environmental Engineering, China University of Mining and Technology-Beijing
  • Online:2024-03-01 Published:2024-03-01

Abstract: The unorganized release of bioaerosols from campus food waste posed a potential threat to the health of campus students and staff. In this study, an Anderson six-stage sampler and a medium-flow total suspended particulate sampler were used to collect air samples from the temporary storage process of food waste in the campus. The culturable and non-cultureable bioaerosols were analyzed by culture techniques and high-throughput sequencing. The results showed that food waste was an important source of bioaerosol release, and the concentration of fungi (224.78±27.69) CFU/m3 in bioaerosol was higher than that of bacteria (116.95±23.01) CFU/m3 and environmental background. That is, the bacterial environmental background value was (32.80±3.61) CFU/m3, and the fungal environmental background value was (54.57±17.24) CFU/m3. In terms of particle size distribution, bacterial aerosols were mainly distributed in stage I (≥7.0 μm), and fungal aerosols were in stage IV (2.1~3.3 μm). The dominant phylum of bacterial aerosols mainly included Proteobacteria and Firmicutes. The former had a higher aerosolization level. The dominant phylum of fungal aerosols mainly included Ascomycota and Basidiomycetes, both of which were easily aerosolization. In terms of health risks, the non-carcinogenic health risk of both breathing and skin-contact were within the maximum acceptable level set by the US EPA. However, the annual exposure risk and disease burden of Pseudomonas and Fusarium were higher than the corresponding limits.

Key words: food waste, bioaerosol, community structure, aerosolization index, health risk

[1] ZHOU Yongquan, LI Xiaowei, TAI Jun. The Effects of Low-dosage Paper Addition on Co-Digestion of Food Waste and Kitchen Waste [J]. Environmental Sanitation Engineering, 2024, 32(4): 36-43.
[2] OUYANG Chuang, ZHANG Yurong, TAI Jun, XU Xianbao, XUE Gang, LI Xiang. Comparative Study on Anaerobic Digestion of Food Waste Enhanced by Biogas Residue Hydrochar and Biogas Residue Pyrochar [J]. Environmental Sanitation Engineering, 2024, 32(3): 47-53.
[3] JIANG Weiwei, YANG Hong, YIN Jianxiang. Odor Pollution Characterization and Health Risk Assessment of An Animal Innocuous Treatment Plant [J]. Environmental Sanitation Engineering, 2024, 32(1): 68-78,86.
[4] ZHANG Dong. Analysis of Carbon Emissions in Different Treatment Process of Three-phase Organic Residues from Food Waste [J]. Environmental Sanitation Engineering, 2024, 32(1): 104-109.
[5] ZHU Yuanchao, ZHAO Zimin, ZHANG Jinsong. Caculation of Carbon Emission During Co-composting of Food Waste and Agricultural Waste and Garden Waste: A Case Study of A Treatment Facility in Town [J]. Environmental Sanitation Engineering, 2024, 32(1): 111-115.
[6] DU Xuexun, SHI Jingjing, ZHANG Siying. Study on Bioaugmentation to Promote Methanogenic Performance of Thermophilic Anaerobic Digestion of Food Waste [J]. Environmental Sanitation Engineering, 2023, 31(6): 46-53.
[7] QI Guangxia, LIU Zhengyang, XIA Yi, CHEN Sihan, HU Jinhui , REN Lianhai. The Impact of Physical Composition on the Composition and Emission Characteristics of Odorous Pollutants During Food Waste Composting [J]. Environmental Sanitation Engineering, 2023, 31(6): 54-62.
[8] MENG Wei, YU Chao, FAN Xiaoping, LIU Yan, CHU Shaohan, SU Hongyu. Design and Operation Examples of Typical Food Waste Treatment Project in Southeast Coastal Area of China [J]. Environmental Sanitation Engineering, 2023, 31(5): 28-34.
[9] YANG Na, WANG Qiao, LYU Fan, YU Boping, XU Qiyong, HE Pinjing. Comparative Analysis of the Physicochemical Characteristics between Household Food Waste and Restaurant Food Waste in China : Impact of Source Segregation [J]. Environmental Sanitation Engineering, 2023, 31(4): 7-16.
[10] LAN Yuanyuan, WU Song, WANG Lei. Study of Material Conditioning Alleviating Acidification Effect in Anaerobic Fermentation of Restaurant Food Waste and Its Mechanism [J]. Environmental Sanitation Engineering, 2023, 31(4): 27-34.
[11] DONG Chengyao, GU Xia, ZHAO Lei, ZHOU Yongquan, LI Xiang. Research Progress on Pretreatment of Anaerobic Fermentation of Kitchen Waste [J]. Environmental Sanitation Engineering, 2023, 31(3): 24-32.
[12] ZENG Fan, ZHAO Xinyi, LIAO Xiaofeng, ZHANG Jun, SHEN Lanlan, QIU Qili, DING Keqiang. Alleviation Effect of Corn Straw on Acid Inhibition in Combined Anaerobic Digestion of Mixture System [J]. Environmental Sanitation Engineering, 2023, 31(2): 63-69.
[13] WU Jian, HUA Yinfeng, CHEN Weihua. Effect Study of Cross-Flow Velocity on Membrane Flux of AnMBR for Food Waste [J]. Environmental Sanitation Engineering, 2023, 31(2): 70-76.
[14] YANG Dekun, LONG Jisheng, LIU Shujia. Case Study and Operational Advantage Analysis of Food Waste Co-processing in Eco-Industrial Park [J]. Environmental Sanitation Engineering, 2023, 31(2): 95-100.
[15] KANG Jiancun, LI Bo, FANG Xiang, CHEN Zixuan, FAN Shisuo, ZHENG Wei. Analyse of Ventilation and Heating Strategies for Rapid Decay of Anaerobic Biogas Residue from Food Waste [J]. Environmental Sanitation Engineering, 2023, 31(1): 37-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . Status Evaluation of Groundwater Quality of A Waste Landfill Site in Tongliao   [J]. Environmental Sanitation Engineering, 2018, 26(3): 36 -38 .
[2] . Analysis on Characteristics of Stench and Effect of Different Deodorization Processes in Domestic Refuse Transfer#br# Station   [J]. Environmental Sanitation Engineering, 2018, 26(3): 56 -58 .
[3] . Stress Analysis of Steam-water Pipes and Optimized Design of Support-hangers in Waste Incineration Power Plant   [J]. Environmental Sanitation Engineering, 2018, 26(3): 59 -62 .
[4] . Research on Treatment of Water-wall High Temperature Corrosion of Waste Heat Boiler in Municipal Solid Waste#br# Incinerator   [J]. Environmental Sanitation Engineering, 2018, 26(3): 68 -70 .
[5] . Prediction on Generation Quantity of Food Waste in Planning of Kitchen Waste Disposal Facilities   [J]. Environmental Sanitation Engineering, 2018, 26(3): 87 -90 .
[6] . [J]. Environmental Sanitation Engineering, 2018, 26(1): 5 -8 .
[7] . [J]. Environmental Sanitation Engineering, 2018, 26(1): 63 -65 .
[8] . [J]. Environmental Sanitation Engineering, 2018, 26(1): 66 -69 .
[9] . [J]. Environmental Sanitation Engineering, 2018, 26(1): 77 -79 .
[10] . [J]. Environmental Sanitation Engineering, 2018, 26(1): 80 -83 .
Copyright © Environmental Sanitation Engineering
Address: 107#, Weidi Road, Tianjin, P.R.C.    Postcode: 300201
Telephone: 022-28365069   Fax: 022-28365080 E-mail: csglwyjs10@tj.gov.cn
Supported by:Beijing Magtech