Environmental Sanitation Engineering ›› 2024, Vol. 32 ›› Issue (3): 16-27.doi: 10.19841/j.cnki.hjwsgc.2024.03.003

Previous Articles     Next Articles

Status Quo of Mining and Resource Utilization of Mineralized Waste in Landfill

XIANG Xianchao, CAI Jiarui, ZHEN Zong’ao, LI Xiaodong   

  1. State Key Laboratory of Clean Energy Utilization, School of Energy Engineering, Zhejiang University
  • Online:2024-07-02 Published:2024-07-02

Abstract: The landfill mining and resource utilization of recyclable land resources,harmless and recycling of mineralized waste in landfill has significant economic and social benefits. The pain points in landfill management at home and abroad were comprehensively reviewed, with a keen focus on analyzing exemplar landfill treatment projects. It underscored the vital importance of pre-mining research, such as encompassing assessments of raw material recovery potential, economic viability evaluation and life cycle assessment. Based on the concept of comprehensive resource utilization of mineralized waste,the physical characteristics, heavy metal content, calorific value, and nutrient components of the mineralized waste in landfills were mainly described. Moreover, the mature resource utilization scheme was summarized, including humus reclamation technology and the thermal treatment of combustible components, thereby offering insights for the construction, excavation, and resource-efficient exploitation of large-scale landfills.

Key words: aged waste, landfill mining, resource utilization, heat treatment, physicochemical property

[1] PENG Dai, DENG Jinhuan, NING Xun’an, CHEN Jiayi, YE Wensheng, ZHANG Dingyuan. Recovery of Iron Resources by Synergistic Magnetization Roasting of Municipal Sludge and Iron Tailings [J]. Environmental Sanitation Engineering, 2024, 32(4): 17-22.
[2] ZHANG Yu. Research on the Current Situation and Countermeasures of Rural Domestic Waste Classification in Xi’an [J]. Environmental Sanitation Engineering, 2024, 32(3): 105-109,116.
[3] XU Yaru, TAO Junyu, LIANG Rui, CHENG Zhanjun, YAN Beibei, CHEN Guanyi. Application and Present Situation of Machine Learning in the Construction Waste Treatment Field [J]. Environmental Sanitation Engineering, 2024, 32(2): 10-19.
[4] QI Gaoyue, HE Sheng. Current Status and Strategies of the Resource Utilization of Organic Waste in Urban and Rural Areas in Suzhou [J]. Environmental Sanitation Engineering, 2023, 31(5): 35-39.
[5] HAO Linbo. Development Research of Construction and Demolition Debris Treatment Industry in China Based on Macro-environment Law [J]. Environmental Sanitation Engineering, 2023, 31(4): 70-75.
[6] ZHU Yue, HE Pinjing, ZHANG Hua. Generation and Utilization of Garden Waste in Shanghai: Status Quo, Challenges and Countermeasures Analysis [J]. Environmental Sanitation Engineering, 2023, 31(3): 15-23.
[7] LI Guimin. Management Status and Disposal Suggestions of Construction and Demolition Debris in Haikou [J]. Environmental Sanitation Engineering, 2023, 31(3): 50-54.
[8] ZHANG Junwen, SU Xingguo, LI Zhanjiang, HUANG Yaling, LI Jin. Research on the Physicochemical Characteristics and Resource Utilization of Mineralized Waste in An Old Large Landfill [J]. Environmental Sanitation Engineering, 2023, 31(1): 81-86.
[9] CHENG Wen, GENG Zhen, JIANG Lanlan. The Design of a Decoration and Renovation Waste Resource Utilization Project in Taihu Basin [J]. Environmental Sanitation Engineering, 2022, 30(5): 94-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . Status Evaluation of Groundwater Quality of A Waste Landfill Site in Tongliao   [J]. Environmental Sanitation Engineering, 2018, 26(3): 36 -38 .
[2] . Analysis on Characteristics of Stench and Effect of Different Deodorization Processes in Domestic Refuse Transfer#br# Station   [J]. Environmental Sanitation Engineering, 2018, 26(3): 56 -58 .
[3] . Stress Analysis of Steam-water Pipes and Optimized Design of Support-hangers in Waste Incineration Power Plant   [J]. Environmental Sanitation Engineering, 2018, 26(3): 59 -62 .
[4] . Research on Treatment of Water-wall High Temperature Corrosion of Waste Heat Boiler in Municipal Solid Waste#br# Incinerator   [J]. Environmental Sanitation Engineering, 2018, 26(3): 68 -70 .
[5] . Prediction on Generation Quantity of Food Waste in Planning of Kitchen Waste Disposal Facilities   [J]. Environmental Sanitation Engineering, 2018, 26(3): 87 -90 .
[6] . [J]. Environmental Sanitation Engineering, 2018, 26(1): 5 -8 .
[7] . [J]. Environmental Sanitation Engineering, 2018, 26(1): 63 -65 .
[8] . [J]. Environmental Sanitation Engineering, 2018, 26(1): 66 -69 .
[9] . [J]. Environmental Sanitation Engineering, 2018, 26(1): 77 -79 .
[10] . [J]. Environmental Sanitation Engineering, 2018, 26(1): 80 -83 .
Copyright © Environmental Sanitation Engineering
Address: 107#, Weidi Road, Tianjin, P.R.C.    Postcode: 300201
Telephone: 022-28365069   Fax: 022-28365080 E-mail: csglwyjs10@tj.gov.cn
Supported by:Beijing Magtech