环境卫生工程 ›› 2024, Vol. 32 ›› Issue (6): 64-69.doi: 10.19841/j.cnki.hjwsgc.2024.06.009

• 热化学处理与烟气污染控制 • 上一篇    下一篇

大容量垃圾焚烧炉内脱硫脱硝一体化工艺研究

段飞飞,朱传强,杨 林,扈明东,尹晓龙,韩 昊   

  1. 1.光大环境科技(中国)有限公司;2. 天津光大兴辰环保能源有限公司
  • 出版日期:2024-12-27 发布日期:2024-12-27

Research on the Integrated Process of Desulfurization and Denitrification in a Large-capacity Waste Incinerator

DUAN Feifei, ZHU Chuanqiang, YANG Lin, HU Mingdong, YIN Xiaolong, HAN Hao   

  1. 1. Everbright Environmental Technology (China) Co. Ltd.;2. Tianjin Everbright Xingchen Environmental Protection Energy Co. Ltd.
  • Online:2024-12-27 Published:2024-12-27

摘要: 垃圾焚烧发电厂炉内脱硫脱硝一体化处理技术是在垃圾焚烧炉炉膛中同时喷入脱硝剂和脱硫剂,从污染物产生源头脱除NOx和SO2。本研究以大容量垃圾焚烧炉烟气多污染物协同控制为研究对象,在无任何脱硫脱硝工艺,单独使用高温脱硝剂、高温脱硫剂,采用“高温脱硫+半干法脱酸”工艺及协同使用脱硫剂、脱硝剂条件下,对NOx和SO2的排放特性进行分析,并比较了传统工艺及脱硫脱硝一体化工艺的经济成本。结果表明:在750 t/d炉膛中同时喷入0.5 g/m3 脱硝剂和0.9 g/m3脱硫剂,脱硝效率、脱硫效率分别可达74%以上和84%以上,可实现NOx排放指标日均值低于100 mg/m3、SO2日均值低于50 mg/m3;当采用“高温脱硫+半干法脱酸”工艺、固定石灰浆流量2 000 L/h时,可稳定控制烟囱出口SO2排放浓度低于20 mg/m3。技术及经济性分析表明,与传统锅炉尾部烟气处理工艺相比,炉内脱硫脱硝一体化工艺技术系统简单、造价较低,不仅可以降低药剂消耗,而且可以降低90%的投资成本和59%的运营成本,在NOx和SO2排放源头控制方面具有良好的应用前景。

关键词: 垃圾焚烧, 大容量, 脱硫脱硝一体化, 工艺研究

Abstract: The integrated treatment technology of desulfurization and denitrification in the furnace of waste incineration power plant is to inject denitrification and desulfurization agents into the furnace of waste incinerator at the same time to remove NOx and SO2 from the source of pollutant generation. In this study, the collaborative control of multi-pollutants in large-capacity incinerator flue gas was taken as the research object, and the emission characteristics of NOx and SO2 were analyzed under the conditions of no desulfurization and denitrification process, using high-temperature denitrification agent and high-temperature desulfurization agent alone, adopting the process of “high-temperature desulfurization+semi-dry deacidification” and using desulfurization and denitrification agents collaboratively. And the economic costs of traditional process and the integrated process of desulfurization and denitrification were compared. The results showed that when 0.5 g/m3 denitrification agent and 0.9 g/m3 desulfurization agent were injected into 750 t/d furnace at the same time, the denitrification efficiency and desulfurization efficiency could reach above 74% and 84% respectively, and the daily average of NOx emission index could be lower than 100 mg/m3, and the daily average of SO2 emission index could be lower than 50 mg/m3. When the process of “high-temperature desulfurization+semi-dry deacidification” was adopted and the lime slurry flow rate was fixed at 2 000 L/h, the SO2 emission concentration at the chimney outlet could be stably controlled below 20 mg/m3. The technical and economic analysis showed that compared with the traditional boiler tail flue gas treatment processes, the integrated process of desulfurization and denitrification in the furnace was simple and low cost, which could not only reduce the consumption of chemicals, but also reduce investment costs by 90% and operating costs by 59%. It had a good application prospect in the source control of NOx and SO2 emissions.

Key words: waste incineration, large-capacity, integrated desulfurization and denitrification, process research

[1] 龚 越. 面向垃圾焚烧余热锅炉受热面的超频震波清灰技术应用与研究[J]. 环境卫生工程, 2024, 32(6): 74-79.
[2] 甘 洁, 刘 豪, 李建辉. 国内外生活垃圾焚烧厂的水排放与监管标准比较分析[J]. 环境卫生工程, 2024, 32(5): 11-16.
[3] 田 伟, 陈 琮, 彭 莉, 陈玉成. 垃圾焚烧飞灰及其固化/稳定化产物的重金属污染特征及环境风险评估[J]. 环境卫生工程, 2024, 32(4): 9-16.
[4] 陈 璐, 杨德坤, 龙吉生. 一体化烟气净化工艺对生活垃圾焚烧厂多污染物协同脱除特性的研究[J]. 环境卫生工程, 2024, 32(4): 51-57.
[5] 王延涛, 龙吉生, 秦 峰. 生活垃圾焚烧发电厂设计参数与焚烧负荷变化的统计分析[J]. 环境卫生工程, 2024, 32(4): 58-62,71.
[6] 黄 华, 黄正鹏, 沈元鹏, 李 浓. 生活垃圾焚烧厂渗滤液全量化处理技术研究[J]. 环境卫生工程, 2024, 32(4): 78-82.
[7] 邹 昕. 中国垃圾焚烧标准回顾与分析(封底文章))[J]. 环境卫生工程, 2024, 32(4): 97-104,111.
[8] 段盼巧, 刘晶昊, 白良成. 生活垃圾焚烧项目可靠性评价分析[J]. 环境卫生工程, 2024, 32(4): 112-116.
[9] 李俊成, 毛梦梅, 龙吉生. 掺烧污泥对垃圾焚烧发电厂烟气净化系统的影响——以某污泥协同焚烧项目为例[J]. 环境卫生工程, 2024, 32(3): 54-58.
[10] 陈海军, 许 睿, 赵景才, 龙吉生. 垃圾焚烧发电厂变频给水泵运行改造节能分析[J]. 环境卫生工程, 2024, 32(3): 59-63.
[11] 邓飞飞, 张栋棚, 郑仁栋, 周纬南, 吴迪迪, 吕媛媛. 杭州市生活垃圾焚烧厂渗滤液季节性变化特征研究[J]. 环境卫生工程, 2024, 32(3): 90-93.
[12] 王天娇, 李 敏, 王 乾, 苗宪宝, 徐 林, 李义华. 生活垃圾焚烧、填埋及污水处理中长时间碳排放水平研究[J]. 环境卫生工程, 2024, 32(2): 75-84.
[13] 陆广博, 罗院生, 艾 扬, 李 松. 北京市某生活垃圾焚烧厂应急处置涉疫生活垃圾案例分析[J]. 环境卫生工程, 2024, 32(1): 45-49.
[14] 李唯实, 文卓钰, 李 丽, 闫大海, 黄启飞. 热处理法降解生活垃圾焚烧飞灰中二噁英的技术现状[J]. 环境卫生工程, 2024, 32(1): 128-128.
[15] 侯霞丽, 沈宏伟, 王丽霞, 胡利华. 生活垃圾焚烧湿法脱酸工艺技术经济分析[J]. 环境卫生工程, 2023, 31(6): 22-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡鑫鑫. 杭州市餐厨垃圾预处理技术的应用[J]. 环境卫生工程, 2018, 26(3): 8 -10 .
[2] 赖后伟 喻友华 陈 浩 等. 我国村镇生活垃圾简易填埋场特点及治理方案选择[J]. 环境卫生工程, 2018, 26(3): 11 -13 .
[3] 张静. 北京六里屯垃圾填埋场填埋气利用途径与效益分析[J]. 环境卫生工程, 2018, 26(3): 26 -28 .
[4] 吴 剑 蹇瑞欢 刘 涛. 我国生活垃圾焚烧发电厂的能效水平研究[J]. 环境卫生工程, 2018, 26(3): 39 -42 .
[5] 陈日晖. 北京市智慧环卫平台建设思路探讨[J]. 环境卫生工程, 2018, 26(3): 91 -93 .
[6] 张 洋. 浅析生活垃圾循环经济产业园总体规划[J]. 环境卫生工程, 2018, 26(3): 94 -96 .
[7] 吴龙张谌郝以党胡天麒. 生活垃圾资源化利用价值分析及处理工艺探讨[J]. 环境卫生工程, 2018, 26(1): 19 -22 .
[8] 刘兰英陈丽向奕锦. 满足GB 16889—2008的填埋场渗沥液处置工艺探讨[J]. 环境卫生工程, 2018, 26(1): 31 -35 .
[9] 王海东. 垃圾渗沥液纳滤浓缩液减量化的研究[J]. 环境卫生工程, 2018, 26(1): 41 -44 .
[10] 宋薇王璐梁东花. 生活垃圾填埋场封场管理评估方法研究[J]. 环境卫生工程, 2018, 26(1): 45 -47 .
版权所有 © 天津市城市管理研究中心
津ICP备2022007900号-1   津公网安备 12010302000952号   中央网信办违法和不良信息举报中心
地址:天津市河西区围堤道107号    邮政编码: 300201
电话: 022-28365069 传真: 022-28365080 E-mail: csglwyjs10@tj.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发