环境卫生工程 ›› 2024, Vol. 32 ›› Issue (3): 78-83.doi: 10.19841/j.cnki.hjwsgc.2024.03.012

• 固体废物处理过程衍生污染控制 • 上一篇    下一篇

开挖的非正规填埋场重(类)金属污染及潜在生态环境风险分析——以嘉善县某填埋场为例

施瑾瑾   

  1. 上海环境工程技术有限公司
  • 出版日期:2024-07-02 发布日期:2024-07-02

Analysis of Heavy Metal(Metalloid)Pollution and Potential Ecological Risk in Excavated Irregular Landfill Sites: A Case Study of a Landfill Site in Jiashan County

SHI Jinjin   

  1. Shanghai Environmental Engineering Technology Co. Ltd.
  • Online:2024-07-02 Published:2024-07-02

摘要: 为明确非正规垃圾填埋场开挖后土地资源是否可实现安全利用,以嘉善县某填埋场为例,对开挖范围基坑及侧壁多点采集样品,对其pH、有机质和重(类)金属浓度进行了检测。结果表明:基坑底部、侧壁土壤中均未检出汞,镉含量与背景点浓度接近,样本含量均≤0.23 mg/kg;重金属总铬、总铜、总铅、总锌在所有样品中的浓度变化趋势相同,最大值分别为99.0、40.2、43.0、201.0 mg/kg,约为背景值的2.43倍、1.05倍、1.60倍和2.03倍,但均低于CJ/T 340—2016绿化种植土壤和GB 36600—2018土壤环境质量 建设用地土壤污染风险管控标准(试行)的要求,可满足绿地用地要求。填埋场土壤中pH为6.77~8.26,基坑底部土壤有机质较低,均值约为7.96 g/kg,远小于绿化用地标准(12~80 g/kg),若要使得该土地符合绿化要求,则需增加有机质含量。根据Hakanson潜在生态风险指数法计算得到该填埋场土壤重(类)金属潜在生态风险RI值为8.85(RI<150),表明该填埋场由汞、镉、砷、铅、铜、铬、锌、镍等8种重(类)金属造成的生态风险较低。

关键词: 非正规填埋场, 开挖, 重(类)金属, 绿化用地, 生态风险评估

Abstract: To clarify whether the land resources could be reused safely after excavation in an informal landfill site, a landfill site in Jiashan county was taken as an example. Samples were collected from the excavation area of foundation pit and side wall, and the pH, organic matter and heavy metal (metalloid) concentrations of samples were detected. The results showed that mercury was not detected in the soil at the bottom and side wall of the foundation pit, the cadmium content was close to the background concentration, and the sample content was both below 0.23 mg/kg. The concentration trends of total chromium, copper, lead, and zinc in all samples were the same, and the maximum values were 99.0, 40.2, 43.0, and 201.0 mg/kg, respectively, with approximately 2.43, 1.05, 1.60, and 2.03 times over the background value. However, they were all lower than the requirements of the CJ/T 340—2016 Planting Soil for Green and GB 36600—2018 Soil Environmental Quality Risk Control Standard for Soil Contamination of Development Land, which could meet the requirements for green land use. The pH of the soil in this landfill site ranged from 6.77 to 8.26, with a relatively low organic matter content (average of about 7.96 g/kg) at the bottom of the foundation pit, which was much lower than the green land standard (12 to 80 g/kg). To make the land meet the green land requirements, it was necessary to increase the organic matter content. In addition, according to the Hakanson potential ecological risk assessment of soil heavy metals (metalloids), the RI value was calculated to be 8.85 (RI<150), indicated that the ecological risk caused by eight heavy metals (metalloids) such as mercury, cadmium, arsenic, lead, copper, chromium, zinc, and nickel in the landfill site was of a mild level.

Key words: irregular landfill sites, excavation, heavy metals (metalloids) , greening land, ecological risk assessment

[1] 林 正, 齐晓宝. 基于Kriging法低渗透地层地下水污染范围预测方法研究[J]. 环境卫生工程, 2023, 31(2): 15-21.
[2] 葛恩燕, 胡 超. 生活垃圾填埋场开采筛分处置技术研究——以卧旗山垃圾填埋场为例[J]. 环境卫生工程, 2022, 30(5): 88-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨 龑 陈海滨 杨 禹 等. 基于F-measure的生活垃圾分类效果评价指标优化研究[J]. 环境卫生工程, 2018, 26(3): 1 -3 .
[2] 陈美珠. 广州市提高生活垃圾分类效果的探索与研究[J]. 环境卫生工程, 2018, 26(3): 4 -7 .
[3] 刘志永 郑泽华. 生活垃圾焚烧发电协同处置市政污泥技术研究——以衡阳市为例[J]. 环境卫生工程, 2018, 26(3): 14 -17 .
[4] 鲁晓菊 杨 迪 姚俊花. 太原市生活垃圾热值影响因素研究[J]. 环境卫生工程, 2018, 26(3): 29 -32 .
[5] 王占磊 陈 丽 刘兰英 等. 厌氧消化过程中氨氮的抑制浓度和消除方法[J]. 环境卫生工程, 2018, 26(3): 33 -35 .
[6] 胡昌夏 徐利奇 卫 革. 北京市密闭式清洁站运行管理验收及检测分析[J]. 环境卫生工程, 2018, 26(3): 49 -51 .
[7] 喻本宏 余明锐. 应用于渗沥液的UASB反应器的优化设计探讨[J]. 环境卫生工程, 2018, 26(3): 63 -67 .
[8] 王凯楠. 北京市大兴区建筑垃圾资源化工程设计[J]. 环境卫生工程, 2018, 26(3): 71 -74 .
[9] 毕 蕾 谭翊莅 董亚楠. 宁波明州生活垃圾焚烧发电厂规避邻避问题的技术升级和建筑设计[J]. 环境卫生工程, 2018, 26(3): 75 -77 .
[10] 关春雨. 国内外垃圾水运类型与适用条件分析[J]. 环境卫生工程, 2018, 26(3): 78 -83 .
版权所有 © 天津市城市管理研究中心
津ICP备2022007900号-1   津公网安备 12010302000952号   中央网信办违法和不良信息举报中心
地址:天津市河西区围堤道107号    邮政编码: 300201
电话: 022-28365069 传真: 022-28365080 E-mail: csglwyjs10@tj.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发