环境卫生工程 ›› 2022, Vol. 30 ›› Issue (6): 22-27.doi: 10.19841/j.cnki.hjwsgc.2022.06.005

• 热化学处理与烟气污染控制 • 上一篇    下一篇

垃圾焚烧余热锅炉过热器高温腐蚀原因分析及改造优化

龙吉生,严浩文,刘 建   

  1. 上海康恒环境股份有限公司
  • 出版日期:2023-01-04 发布日期:2023-01-04

High Temperature Corrosion Source Trace of Waste Heat Boiler Superheater and Optimization by Structure Alteration in a MSW Incineration Power Plant

LONG Jisheng, YAN Haowen, LIU Jian   

  1. Shanghai SUS Environment Co. Ltd.
  • Online:2023-01-04 Published:2023-01-04

摘要: 高温腐蚀是制约垃圾焚烧发电厂长周期稳定运行的关键因素之一。以某垃圾焚烧发电项目余热锅炉为研究对象,分析了改造前和改造后过热器区域烟气温度、蒸汽温度、壁温以及炉内速度场分布情况。结果表明,通过优化受热面布置、设计折焰角等手段严格控制过热器管壁温度,改善水平烟道内流场冲刷不均匀性,可以降低过热器高温腐蚀风险。同时,12Cr1MoVG材质在壁温高于472 ℃时耐腐蚀性能明显下降,而TP347H材质在壁温约为493 ℃及以下温度区域仍能具有良好的耐腐蚀性能,建议当壁温高于465 ℃时,管壁采用耐腐蚀性能不低于TP347H的不锈钢材质或其他防腐工艺。

关键词: 垃圾焚烧, 余热锅炉, 高温腐蚀, 设计优化

Abstract: High temperature corrosion is one of the key factors restricting the long-term stable operation of waste incineration power plants. A waste heat boiler of a waste incineration power plant was taken as the research object, the gas temperature, steam temperature, tube wall temperature of superheater and the distribution of velocity filed in furnace before and after modification were analyzed. The results showed that the high temperature corrosion risk of the superheater could be reduced by strictly controlling the tube wall temperature of superheater through optimizing the layout of heating surface and designing the furnace arch, and improving the non-uniformity of flow field scouring in the horizontal gas pass. At the same time, the corrosion resistance of 12Cr1MoVG material was decreased evidently when the wall temperature was higher than 472 ℃, while TP347H material still had good corrosion resistance when the wall temperature was about 493 ℃ and below. It was recommended that when the wall temperature was higher than 465 ℃, stainless steel with corrosion resistance no less than TP347H or other anti-corrosive processes could be used for tube wall.

Key words: waste incineration, waste heat boiler, high temperature corrosion, design optimization

[1] 石凯军, 蹇瑞欢. 现有生活垃圾焚烧厂掺烧工业固废及其垃圾池管理分析[J]. 环境卫生工程, 2022, 30(6): 28-33.
[2] 沈宏伟, 胡利华, 郭无双, 钱 琨. 生活垃圾焚烧常见烟气脱硝工艺的技术经济分析[J]. 环境卫生工程, 2022, 30(6): 34-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨 龑 陈海滨 杨 禹 等. 基于F-measure的生活垃圾分类效果评价指标优化研究[J]. 环境卫生工程, 2018, 26(3): 1 -3 .
[2] 陈美珠. 广州市提高生活垃圾分类效果的探索与研究[J]. 环境卫生工程, 2018, 26(3): 4 -7 .
[3] 胡鑫鑫. 杭州市餐厨垃圾预处理技术的应用[J]. 环境卫生工程, 2018, 26(3): 8 -10 .
[4] 赖后伟 喻友华 陈 浩 等. 我国村镇生活垃圾简易填埋场特点及治理方案选择[J]. 环境卫生工程, 2018, 26(3): 11 -13 .
[5] 刘志永 郑泽华. 生活垃圾焚烧发电协同处置市政污泥技术研究——以衡阳市为例[J]. 环境卫生工程, 2018, 26(3): 14 -17 .
[6] 程 曦 朱 广 徐 辉 等. 生活垃圾焚烧炉渣的工程特性[J]. 环境卫生工程, 2018, 26(3): 18 -22 .
[7] 孔红. 生活垃圾焚烧厂SNCR脱硝系统的自动控制[J]. 环境卫生工程, 2018, 26(3): 23 -25 .
[8] 张静. 北京六里屯垃圾填埋场填埋气利用途径与效益分析[J]. 环境卫生工程, 2018, 26(3): 26 -28 .
[9] 鲁晓菊 杨 迪 姚俊花. 太原市生活垃圾热值影响因素研究[J]. 环境卫生工程, 2018, 26(3): 29 -32 .
[10] 王占磊 陈 丽 刘兰英 等. 厌氧消化过程中氨氮的抑制浓度和消除方法[J]. 环境卫生工程, 2018, 26(3): 33 -35 .
版权所有 © 天津市城市管理研究中心
津ICP备2022007900号-1   津公网安备 12010302000952号   中央网信办违法和不良信息举报中心
地址:天津市河西区围堤道107号    邮政编码: 300201
电话: 022-28365069 传真: 022-28365080 E-mail: csglwyjs10@tj.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发