Environmental Sanitation Engineering ›› 2022, Vol. 30 ›› Issue (6): 11-15.doi: 10.19841/j.cnki.hjwsgc.2022.06.003

Previous Articles     Next Articles

Discussion on Renovation and Businesses Model of Existing Domestic Waste Landfill

ZHAN Songlin, GAO Lei, ZHOU Kebin   

  1. 1. Sinochem Commerce Co. Ltd.; 2. Institute of Disaster Prevention
  • Online:2023-01-04 Published:2023-01-04

Abstract: Landfill is a traditional way to treat domestic waste in China. It had not only occupied large-scale land and space resources, but also posed long-term potential risks to the surrounding air, soil, groundwater, and residents’ living environment, which has been repeatedly notified by environmental protection inspectors. With the promotion of full coverage of incineration treatment, the renovation and utilization of existing waste landfills has gradually become a new task in many areas. First, the demand and practical exploration of landfill renovation and utilization were sorted out. Then the process, technical requirements, and application scope of the two main technical routes of ecological restoration and mining reuse were analyzed. Finally, three business models of EPC(engineering procurement construction), ROT(retrofit-operate-transfer) and EOD(ecology-oriented development) were proposed for the implementation of the project, and suggestions for their application were given. For projects using ecological restoration technology, the boundary conditions was generally clear and the business was non-profit, so the funds should be implemented from the local government financial budget, and the EPC mode could be adopted. For projects with public welfare development after waste mining, if the local government financial fund was sufficient, the EPC mode could be adopted, if the local government financial fund was insufficient, the ROT mode could be adopted to introduce private capital for cooperation. And the EOD mode was more suitable for the projects of business development after waste mining.

Key words: landfill, ecological remediation, exploitation and reuse, business model

[1] MENG Fanyue. Engineering Design for Groundwater Remediation at a Large-scale Aged Landfill Site [J]. Environmental Sanitation Engineering, 2025, 33(3): 56-63.
[2] QIU Qingwen. Suggestions on Geotechnical Engineering Design of Domestic Waste Incineration Fly Ash Landfill [J]. Environmental Sanitation Engineering, 2025, 33(3): 64-69.
[3] CAO Zhanqiang. Research and Engineering Application of Rapid Aerobic Stabilization Equipment for Aged Waste [J]. Environmental Sanitation Engineering, 2025, 33(3): 75-81.
[4] ZHANG Zongjian, ZHOU Feng, BU Qingguo, ZHANG Jiao. Research on Settlement of Vertical Reconstruction of Domestic Waste Landfill [J]. Environmental Sanitation Engineering, 2025, 33(2): 110-116.
[5] YUAN Miaoxin, GE Enyan, ZHAN Sheng, XU Huazhong, CHEN Huan. Process Design and Exploration of Rapid Ventilation Pretreatment for Landfills [J]. Environmental Sanitation Engineering, 2025, 33(2): 95-101.
[6] SHI Zhili. Analysis of Excavation and Screening Process and Determination of Parameters for Small-scale Simple Landfills:A Case Study on a Small-scale Simple Landfill in Zhejiang Province [J]. Environmental Sanitation Engineering, 2025, 33(2): 102-109.
[7] WU Haijun, SHEN Feng, LI Wanjin, ZHANG Zelin, CAO Jian, LI Jingruo. Study on the Physical-chemical Properties and Unconfined Compressive Strength of Aged Garbage Humus [J]. Environmental Sanitation Engineering, 2024, 32(6): 28-35.
[8] LIANG Zhifei, ZHU Xiongtao. Application of Oxygen Injection Stabilization Pretreatment Technology in Excavation of Stockpiled Waste from Domestic Waste Sanitary Landfill [J]. Environmental Sanitation Engineering, 2024, 32(6): 90-95.
[9] CHEN Hua, HE Yaozhong, LIU Shuai, LIU Chang, YANG Jiajie. Comprehensive Remediation Project of Phased Closure for Large-scale MSW Landfill:A Case Study of a MSW Landfill in Guangdong Province [J]. Environmental Sanitation Engineering, 2024, 32(5): 93-98.
[10] SHANG Weichun, WANG Lixiao, ZHENG Ji, DIAO Luyi. Investigation and Risk Assessment of an Informal Landfill in Zhejiang Province [J]. Environmental Sanitation Engineering, 2024, 32(5): 99-103,111.
[11] SHENG Yan, LIN Huansheng, DU Yuelin, DING Qianshen, LIU Lei. The Influence of Landfilled Age and Compaction Degree on Mechanical Properties of the Waste Humus Soil [J]. Environmental Sanitation Engineering, 2024, 32(5): 104-111.
[12] SHAN Yuanyuan. Analysis and Technological Research of the Influence of Moisture Content on the Screening Efficiency of Refuse Soil [J]. Environmental Sanitation Engineering, 2024, 32(5): 112-115.
[13] XIAO Yi, JIA Weijian. Methane Control Status and Comprehensive Utilization of Domestic Waste in Beijing [J]. Environmental Sanitation Engineering, 2024, 32(3): 9-15.
[14] XIANG Xianchao, CAI Jiarui, ZHEN Zong’ao, LI Xiaodong. Status Quo of Mining and Resource Utilization of Mineralized Waste in Landfill [J]. Environmental Sanitation Engineering, 2024, 32(3): 16-27.
[15] SHI Jinjin. Analysis of Heavy Metal(Metalloid)Pollution and Potential Ecological Risk in Excavated Irregular Landfill Sites: A Case Study of a Landfill Site in Jiashan County [J]. Environmental Sanitation Engineering, 2024, 32(3): 78-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
Copyright © Environmental Sanitation Engineering
Address: 107#, Weidi Road, Tianjin, P.R.C.    Postcode: 300201
Telephone: 022-28365069   Fax: 022-28365080 E-mail: csglwyjs10@tj.gov.cn
Supported by:Beijing Magtech