环境卫生工程 ›› 2025, Vol. 33 ›› Issue (6): 115-123.doi: 10.19841/j.cnki.hjwsgc.2025.06.014

• 环境卫生系统自动化、智能化、智慧化管理 • 上一篇    下一篇

基于 XGBoost-SHAP 方法揭示运行参数对协同焚烧过程的影响

汪少娜,李豫军,周 康,喻 武,韩怡语,薛 浩   

  1. 中节能环境保护股份有限公司
  • 出版日期:2025-12-24 发布日期:2025-12-24

Revealing the Influence of Operating Parameters on the Co-incineration Process Based on the XGBoost-SHAP Method

WANG Shaona, LI Yujun, ZHOU Kang, YU Wu, HAN Yiyu, XUE Hao   

  1. CECEP Environmental Protection Co. Ltd.
  • Online:2025-12-24 Published:2025-12-24

摘要: 由于焚烧控制工艺参数复杂多变,导致人工操作过程中无法快速寻找最重要的控制参数。XGBoost-SHAP常用于机器学习模型的可解释性分析,可以解析某个特征对预测值重要性次序。本研究以实际垃圾焚烧发电的炉排式焚烧炉为研究对象,采集了协同焚烧沼渣、渗滤液和污泥的运行数据,通过实际改变风量、炉排停留时间等工业中常调控的参数,采用XGBoost-SHAP重要性解释方法分析参数调控对主蒸汽流量和气态污染物排放的影响。结果发现:炉膛烟气温度中(中)和总风量对主蒸汽流量的影响最大;二次风风量对NOx浓度的影响最大;掺烧渗滤液对各参数变化的影响最大,其次是污泥和沼渣。本研究主要明确了燃烧过程中调控参数之间潜在关系的优先顺序,并结合实际运行实时数据和主成分分析明确了各参数之间的正负相关关系,可为实际工程运行提供参考。

关键词:  XGBoost-SHAP, 重要性次序, 协同焚烧, 参数优化

Abstract: Due to the complexity and variability of control parameters in the incineration process, it is difficult to quickly identify the most critical control parameters during manual operation. XGBoost-SHAP is often used for interpretability analysis of machine learning models and can analyze the importance ranking of specific features relative to predicted values. In this study, operational data of the co-incineration of biogas residue, leachate, and sludge were collected from a grate-type incinerator at an actual municipal solid waste incineration power plant. By actively adjusting parameters commonly regulated in industrial practice (such as air flow rate and grate residence time), the XGBoost-SHAP importance interpretation method was employed to analyze the effects of parameter adjustments on the main steam flow rate and gaseous pollutant emissions. The results indicated that the furnace temperature and total air flow rate had the most significant impact on the main steam flow rate. The secondary air flow rate exerted the greatest influence on NOx concentration, and the co-incineration of leachate had the most pronounced effect on parameter variations, followed by sludge and biogas residue. This study clarified the priority order of potential relationships among regulatory parameters during the combustion process. Furthermore, by integrating real-time operational data with principal component analysis, it identified positive and negative correlations among various parameters, offering valuable references for practical engineering operations.

Key words: XGBoost-SHAP, importance order, co-incineration, parameter optimization

[1] 赵宇轩, 魏国侠, 刘汉桥, 赵海龙, 李 通, 龚永月, 乔浩宇. 两种医疗废物应急协同处置技术的生命周期评价[J]. 环境卫生工程, 2022, 30(6): 58-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 天津市城市管理研究中心
津ICP备2022007900号-1   津公网安备 12010302000952号   中央网信办违法和不良信息举报中心
地址:天津市河西区围堤道107号    邮政编码: 300201
电话: 022-28365069 传真: 022-28365080 E-mail: csglwyjs10@tj.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发