环境卫生工程 ›› 2025, Vol. 33 ›› Issue (5): 11-17.doi: 10.19841/j.cnki.hjwsgc.2025.05.002

• 环境卫生系统自动化、智能化、智慧化管理 • 上一篇    下一篇

基于时间序列神经网络模型预测垃圾焚烧炉运行参数的研究

商 煜,喻 武,李豫军,周 康,李清海,汪少娜   

  1. 1. 中节能环境保护股份有限公司;2. 清华大学 能源与动力工程系
  • 出版日期:2025-10-27 发布日期:2025-10-27

Research on Prediction of Waste Incinerators Operational Parameter Based on Time Series Neural Network Model

SHANG Yu, YU Wu, LI Yujun, ZHOU Kang, LI Qinghai, WANG Shaona   

  1. 1. CECEP Environmental Protection Co. Ltd.; 2. Department of Energy and Power Engineering, Tsinghua University
  • Online:2025-10-27 Published:2025-10-27

摘要: 在“双碳”战略背景下,融合人工智能、大数据和云计算等技术实现城市固体废物焚烧发电的智能化、绿色化和低碳化是目前面临的挑战性难题。本研究采用互相关法对垃圾焚烧炉的110个变量进行相关性分析,得出与主蒸汽流量、炉膛平均温度和平均含氧量3个被预测变量相关性高的变量。并据相关性分析结果,计算出主蒸汽流量、炉膛平均温度和平均含氧量3个被预测变量与设备控制参数的延时步长。利用4种时间序列预测模型对主蒸汽流量、炉膛平均温度和平均含氧量进行预测,模型比较结果显示:PatchTST在测试集上预测误差最低(主蒸汽流量、炉膛平均温度、平均含氧量的标准化平均绝对误差(NMAE)分别为0.072 9、0.056 0、0.140 6),具有较好的泛化能力和预测能力,能较好地消除数据的时滞性,降低操作员主观能力判断引起的误差,为实时在线操作提供数据支撑。

关键词: 垃圾焚烧炉排炉, 人工智能, 深度学习, 神经网络, 时间序列预测

Abstract: Under the “dual carbon” strategy background, integrating technologies such as artificial intelligence, big data and cloud computing to achieve the intelligence, greenness and low-carbonization of municipal solid waste incineration power generation presents a significant challenge. In this study, the cross-correlation method was employed to analyze the correlations among 110 variables in a waste incinerator, and the variables with high correlations with three predicted variables, namely main steam flow, furnace average temperature and average oxygen content, were obtained. Based on this correlation analysis, the time delay steps between these three predicted variables and the equipment control parameters were calculated. Meanwhile, four time-series forecasting models were utilized to predict the main steam flow, furnace average temperature and average oxygen content. The results demonstrated that PatchTST had the lowest prediction error on the test set (the NMAE of main steam flow, furnace average temperature and average oxygen content was 0.072 9, 0.056 0 and 0.140 6, respectively), which exhibited superior generalization and predictive capabilities. It could better eliminate the time lag of data and reduce the error caused by the subjective judgment ability of operators, providing data support for real-time online operations.

Key words: grate-type waste incinerator, artificial intelligence, deep learning, neural network, time series prediction

[1] 许亚如, 陶俊宇, 梁 蕊, 程占军, 颜蓓蓓, 陈冠益. 机器学习在建筑垃圾处理领域的应用与现状[J]. 环境卫生工程, 2024, 32(2): 10-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 鞠阿莲. 日本生活垃圾收费制度综述[J]. 环境卫生工程, 2018, 26(2): 81 -82 .
[2] 喻本宏 何桂芳. 两级硝化反硝化系统处理渗沥液的曝气系统计算探讨[J]. 环境卫生工程, 2018, 26(4): 60 -63 .
[3] 高凯敏 董玉锋. 3种填埋气收集井运用特点的论述[J]. 环境卫生工程, 2018, 26(4): 70 -72 .
[4] 董 辉. 老港综合填埋场生活垃圾填埋运行现状及成本分析[J]. 环境卫生工程, 2018, 26(4): 78 -80 .
[5] 史 炜1,王军民1,柴晓利2,曹江林2,卞荣星2. 填埋场恶臭产生规律及治理措施[J]. 环境卫生工程, 2018, 26(5): 65 -68 .
[6] 施云春1, 王 伟1,王 峰2. 水热预处理对普通小球藻生物质厌氧消化和固液分离性能的影响[J]. 环境卫生工程, 2018, 26(6): 23 -27 .
[7] 王 涛1,陈亮亮2,王高尚1,何术东1. 垃圾焚烧发电厂ACC与DCS关系探讨[J]. 环境卫生工程, 2018, 26(6): 73 -76 .
[8] 韩正平, 勾冬梅, 高 波, 闵海华. 垃圾焚烧飞灰固化方法和运营方式优化[J]. 环境卫生工程, 2019, 27(3): 65 -68 .
[9] 陈国义, 李兴国, 高 于. 刍议北方地区冬季生活垃圾堆酵析水[J]. 环境卫生工程, 2019, 27(4): 32 -34 .
[10] 李 琳, 李广科. 卫生填埋场垃圾渗滤液典型毒理学效应的研究进展[J]. 环境卫生工程, 2019, 27(6): 16 -19 .
版权所有 © 天津市城市管理研究中心
津ICP备2022007900号-1   津公网安备 12010302000952号   中央网信办违法和不良信息举报中心
地址:天津市河西区围堤道107号    邮政编码: 300201
电话: 022-28365069 传真: 022-28365080 E-mail: csglwyjs10@tj.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发