环境卫生工程 ›› 2023, Vol. 31 ›› Issue (4): 7-16.doi: 10.19841/j.cnki.hjwsgc.2023.04.002

• 有机固废生物处理与高值化利用 • 上一篇    下一篇

我国家庭厨余垃圾与餐厨垃圾理化性质对比分析——源头分类的影响

杨 娜,王 巧,吕 凡,余波平,徐期勇,何品晶   

  1. 1. 深圳市环境科学研究院; 2. 同济大学 固体废物处理与资源化研究所; 3. 北京大学深圳研究生院; 4. 广东省环境保护污水高质化利用工程技术研发中心
  • 出版日期:2023-08-31 发布日期:2023-08-31

Comparative Analysis of the Physicochemical Characteristics between Household Food Waste and Restaurant Food Waste in China : Impact of Source Segregation

YANG Na, WANG Qiao, LYU Fan, YU Boping, XU Qiyong, HE Pinjing   

  1. 1. Shenzhen Academy of Environmental Science; 2. Institute of Waste Treatment and Reclamation, Tongji University; 3. Peking University Shenzhen Graduate School; 4. Guangdong Provincial Environmental Protection Wastewater Quality Utilization Engineering Technology R&D Center
  • Online:2023-08-31 Published:2023-08-31

摘要: 理化性质是决定厨余垃圾处理技术选型和污染潜力评估的关键参数。通过源头分类后厨余垃圾的采样测试和文献数据甄别、调研,总结了我国家庭厨余垃圾和餐厨垃圾的理化性质指标。研究结果表明,深圳市源头分类的家庭厨余垃圾杂质含量(12.60%±2.50%)和重金属浓度(除Cr外均低于检测限)处于强制分类制度实施前的报道数据以下,而有机质含量(90.6%±5.0%)相比报道数据则更高,其资源化利用率得到有效提升;与生活垃圾混合收运时的含水率(65.5%±4.0%)相比,经源头分类的家庭厨余垃圾含水率更高(76.8%±5.0%,P=0.004 7),通过限制水分向其他垃圾组分的迁移,提高了后者的热值和回收潜力。我国家庭厨余垃圾的密度为(0.38±0.16) t/m3,盐分、有机质和脂肪含量分别为1.34%±0.51%、81.8%±5.7%、12.3%±6.1%,显著低于餐厨垃圾的(0.92±0.17) t/m3(P=0.000 29)、3.89%±2.00%(P=0.043)、90.1%±4.8%(P=0.000 1)、21.6%±7.9%(P=0.022),其余指标无显著差异。在垃圾管理系统中,家庭厨余垃圾和餐厨垃圾的收集运输和预处理环节应根据其性质特点分别设计;处理环节可根据工艺特点和技术参数要求进行调质后实现一定程度的协同。经测算,家庭厨余垃圾和餐厨垃圾的盐分含量均低于生物处理的浓度抑制限值;堆肥产品中的重金属浓度低于相关污染评价标准限值。

关键词: 家庭厨余垃圾, 餐厨垃圾, 源头分类, 理化性质, 协同处理

Abstract: Physical and chemical properties were the key parameters to determine the technology selection and pollution potential assessment of kitchen waste treatment. The physical and chemical properties of household food waste (HFW)and restaurant food waste (RFW)in China were summarized by sampling test and literature data screening and investigation after source classification. The results indicated that compared with the data reported before the waste classification policy, the contents of impurities (12.60%±2.50%) and heavy metals (below detection limit except for Cr) of the source segregated HFW in Shenzhen were lower, while the organic matter content (90.6%±5.0%) was higher, its resource utilization rate had been effectively improved. The moisture content of HFW by source segregation was higher (76.8%±5.0%, P=0.004 7) than those sampled from mixed collected MSW (65.5%±4.0%), which could promote the calorific value and recovery potential of other waste components by restricting water diffusion to other waste components. The density, sodium chloride, organic matter and fat content of HFW in China were (0.38±0.16) t/m3, 1.34%±0.51%, 81.8%±5.7%, 12.3%±6.1%, respectively, which were significantly lower than those of RFW of (0.92±0.17) t/m3 (P=0.000 29), 3.89%±2.00% (P=0.043), 90.1%±4.8% (P=0.000 1), 21.6%±7.9% (P=0.022). And there was no significant difference in other indicators. Accordingly, in waste management system, the collection, transportation, and pretreatment processes of HFW and RFW should be designed independently according to their characteristics. The processing process could achieve a certain degree of coordination after conditioning according to the process characteristics and technical parameters. It was estimated that the salt content of HFW and RFW were both below the limit of inhibition concentration for biological treatment. The heavy metal contents of compost products were also lower than the relevant pollution assessment standards limit.

Key words:  household food waste, restaurant food waste, source-segregation, physical and chemical properties, co-treatment

[1] 张晓星, 王 伟, 张献华. 提油对家庭厨余垃圾厌氧资源化处理工程运营安全及经济性分析[J]. 环境卫生工程, 2025, 33(3): 49-55.
[2] 夏 青, 徐孝健, 张虞婷, 周呈亚, 刘海春. 扬州家庭厨余垃圾重金属赋存特征与风险评价[J]. 环境卫生工程, 2025, 33(2): 50-54.
[3] 许家辉, 刘 超, 乐亮亮, 苏 醒, 陈卫华, 吴 健. 气液射流搅拌工艺在餐厨垃圾厌氧发酵工程的应用研究[J]. 环境卫生工程, 2025, 33(1): 78-84.
[4] 武海军, 沈 峰, 李万金, 张泽林, 曹 建, 李菁若. 陈年垃圾腐殖土理化性质及无侧限抗压强度研究[J]. 环境卫生工程, 2024, 32(6): 28-35.
[5] 李国庆. 基于黑水虻虫卵自供给的养殖优化及经济效益分析[J]. 环境卫生工程, 2024, 32(6): 50-56.
[6] 张 力, 李 科, 朱雅萍, 吴 元, 杨虎君. 餐厨垃圾碟式分离制备碳源及其应用研究[J]. 环境卫生工程, 2024, 32(5): 62-66.
[7] 陈佳新, 崔理慧, 延一鸣, 吉星星, 费 强, 马英群. 原位制备混合菌基复合酶强化餐厨垃圾定向水解和厌氧消化:效能、机制、微生物群落和全局代谢通路[J]. 环境卫生工程, 2024, 32(5): 128-128.
[8] 周永泉, 李小伟, 邰 俊. 低剂量纸巾添加对餐厨垃圾和厨余垃圾共消化的影响[J]. 环境卫生工程, 2024, 32(4): 36-43.
[9] 欧阳创, 张余镕, 邰 俊, 徐先宝, 薛 罡, 李 响. 沼渣水热炭与沼渣热解炭强化餐厨垃圾厌氧消化对比研究[J]. 环境卫生工程, 2024, 32(3): 47-53.
[10] 刘彦君, 汤倩格, 王 盛, 李振坤, 王建兵. 校园餐厨垃圾初期降解生物气溶胶释放特征及健康风险研究[J]. 环境卫生工程, 2024, 32(1): 57-67.
[11] 刘 硕, 汪群慧, 李 媛, 马晓宇, 朱文彬, 王锘涵, 孙海曙, 高 明. 餐厨垃圾开放式高效定向乳酸生物转化:微生物群落变化及生物固碳效能分析[J]. 环境卫生工程, 2024, 32(1): 127-127.
[12] 杜学勋, 史晶晶, 张斯颖. 生物强化促进餐厨垃圾高温厌氧消化产甲烷性能的研究[J]. 环境卫生工程, 2023, 31(6): 46-53.
[13] 祁光霞, 刘政洋, 夏 怡, 陈思涵, 胡进会, 任连海. 物理组成对厨余垃圾堆肥恶臭组成及排放特征影响[J]. 环境卫生工程, 2023, 31(6): 54-62.
[14] 孟 伟, 于 超, 范晓平, 刘 岩, 褚昭涵, 苏红玉. 东南沿海地区典型餐厨垃圾处理工程设计及运行实例[J]. 环境卫生工程, 2023, 31(5): 28-34.
[15] 蓝苑瑗, 吴 松, 王 磊. 物料调理缓解餐厨垃圾厌氧发酵酸化效应及其机制研究[J]. 环境卫生工程, 2023, 31(4): 27-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 天津市城市管理研究中心
津ICP备2022007900号-1   津公网安备 12010302000952号   中央网信办违法和不良信息举报中心
地址:天津市河西区围堤道107号    邮政编码: 300201
电话: 022-28365069 传真: 022-28365080 E-mail: csglwyjs10@tj.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发