环境卫生工程 ›› 2025, Vol. 33 ›› Issue (6): 108-114,123.doi: 10.19841/j.cnki.hjwsgc.2025.06.013

• 环境卫生系统自动化、智能化、智慧化管理 • 上一篇    下一篇

多污染物超低排放协同优化系统的设计与实现

韩 亮,陈 牧,刘 瑜,汪守康,黄群星,林晓青,余 泓   

  1. 1. 中国电力工程顾问集团中南电力设计院有限公司;2. 浙江大学 能源高效清洁利用全国重点实验室
  • 出版日期:2025-12-24 发布日期:2025-12-24

Design and Implementation of a Multi-pollutant Ultra-low Emission Cooperative Optimization System

HAN Liang, CHEN Mu, LIU Yu, WANG Shoukang, HUANG Qunxing, LIN Xiaoqing, YU Hong   

  1. 1. Central Southern China Electric Power Design Institute Co. Ltd. of China Power Engineering Consulting Group; 2. State Key Laboratory of Clean Energy Utilization, Zhejiang University
  • Online:2025-12-24 Published:2025-12-24

摘要: 随着我国大气污染物排放标准的持续收紧,传统的单污染物末端治理模式难以兼顾超低排放与成本控制。基于此,针对典型大型工业燃烧源,设计并实现了一套多污染物协同优化系统。系统集成脱硝、除尘与脱硫单元,基于长短时记忆网络构建多污染物预测模型,并结合电耗与物耗建立运行成本模型。在排放和设备双约束条件下,引入粒子群与差分进化算法开展全局寻优。浙江某电站机组的案例研究表明,该方法在确保SO2、NOx与颗粒物排放稳定达标的前提下,使运行成本平均降低10%~20%,并在不同负荷工况下保持稳定表现。研究结果验证了该方法的工程可行性,对大型工业燃烧源的节能减排具有应用价值。

关键词: 超低排放, 多污染物协同优化, LSTM预测, 演化学习算法, 成本最优

Abstract: With the continuous tightening of air pollutant emission standards in China, traditional end-of-pipe control focusing on single pollutants can no longer meet the dual requirements of ultra-low emissions and cost control. Based on this, a multi-pollutant cooperative optimization system for typical large-scale industrial combustion sources was designed and implemented. The system integrated denitrification, dust removal and desulfurization units. A long short-term memory network was employed to develop multi-pollutant prediction models, and an operational cost model was established considering electricity and reagent consumption. Under emission and equipment constraints, particle swarm optimization and differential evolution algorithms were applied for global optimization. A case study on a power unit in Zhejiang province showed that the proposed method ensured stable compliance with SO2, NOx, and particulate matter standards, while reducing operational costs by 10%-20% on average across different load conditions. The results confirmed the engineering feasibility of the approach and highlighted its practical value for energy saving and emission reduction in large industrial combustion sources.

Key words:  ultra-low emission, multi-pollutant cooperative optimization, LSTM prediction, evolutionary learning algorithm, cost minimization

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 天津市城市管理研究中心
津ICP备2022007900号-1   津公网安备 12010302000952号   中央网信办违法和不良信息举报中心
地址:天津市河西区围堤道107号    邮政编码: 300201
电话: 022-28365069 传真: 022-28365080 E-mail: csglwyjs10@tj.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发