Environmental Sanitation Engineering ›› 2023, Vol. 31 ›› Issue (6): 1-10.doi: 10.19841/j.cnki.hjwsgc.2023.06.001

Previous Articles     Next Articles

Combustion Characteristics and Kinetic Analysis of the Co-combustion of MSW and Excavated Waste

SUN Ziwei, ZHANG Yuxuan, TANG Yuting, WANG Siqi, TANG Jiehong, MA Xiaoqian   

  1. 1. School of Electric Power, South China University of Technology; 2. Guangdong Key Laboratory of Energy Efficiency and Clean Utilization, South China University of Technology
  • Online:2024-01-05 Published:2024-01-05

Abstract: The blending of MSW with aged waste could realize the resource utilization of both at the same time. Thermogravimetric analysis was used to study the combustion process of MSW blended with aged wastes. The combustion characteristics parameters of samples with 100%, 75%, 50%, 25% and 0 blending ratios of aged waste were calculated based on the thermal characteristic curves obtained. Further, the Kissinger-Akahira-Sunose method (KAS method) and Coats-Redfern integral method (C-R method) were applied to investigate the kinetic properties of the blending, and the fitting effectiveness and adaptability of the computational model were evaluated based on the fitting correction factor (adjR2). The results showed that the ignition characteristic index of the samples decreased when the mixing ratio of aged waste increased, while the burnout characteristic index and the integrated combustion characteristic index both showed a tendency of first increased and then decreased. Under the experimental conditions, the dominant mixing ratios of the burnout characteristic index and the integrated combustion characteristic index were 0~50%, and the integrated combustion characteristic index reached the peak at the mixing ratio of 25%. With the increase of the blending ratio of aged waste, the global activation energy calculated by the KAS method showed a decreasing trend from 244.49 kJ/mol to 79.40 kJ/mol, and its adjR2 increased from 0.936 6 to 0.988 9; and the global activation energy calculated by the C-R method showed an increasing trend from 20.86 kJ/mol to 34.21 kJ/mol, while its adjR2 increased from 0.985 0 to 0.997 5. Comparing the fitting curves of the two kinetic models with the experimental data, it could be seen that the fitting curve of the KAS method had some distortion in the high temperature combustion section, and the fitting effect of the C-R method was better in general.

Key words: thermogravimetric analysis, excavated waste, municipal solid waste, combustion characteristics, kinetic analysis

[1] QI Xiaobo, YI Peng, MA Yunfeng, LIN Xiaoqing. Study on the Combustion Characteristics of Municipal Solid Waste Influenced by Large Proportion of Typical Industrial Solid Waste in a Solid Waste Incinerator [J]. Environmental Sanitation Engineering, 2025, 33(2): 1-11.
[2] QI Jianan, ZHOU Shuo, NING Qing, WANG Huan, LI Bing, LIU Haiwei. Technical-economic Analysis of SRF Preparation Processes from Municipal Solid Waste in County Area of China [J]. Environmental Sanitation Engineering, 2025, 33(1): 23-31.
[3] YAN Haowen, ZHANG Bei, WANG Zhiqiang, LONG Jisheng, JIN Xingqian, GUO Xinwei. Engineering Practice and Analysis of Exhaust Gas Recirculation Technology for Waste Incineration Power Generation Project [J]. Environmental Sanitation Engineering, 2025, 33(1): 98-102.
[4] GUO Kaiyi, DING Zihang, WEN Sijie, LI Huan, LIU Jianguo, WEI Junxiao. Study on Greenhouse Gas Quantification and Emission Reduction Potentials in Municipal Solid Waste Transportation in Zhanjiang City [J]. Environmental Sanitation Engineering, 2025, 33(1): 130-139.
[5] WANG Chuan, WANG Huishuang, TAI Jun, BI Zhujie, FAN Shuaikang, SONG Xiaolong. Impact of Source Sorting on Carbon Emission and Reduction of Municipal Solid Waste Treatment:A Case Study of Kitchen and Residual Waste Sorting in Shanghai [J]. Environmental Sanitation Engineering, 2025, 33(1): 140-140.
[6] ZHOU Baiyu, REN Yi, DU Chunyan, ZHU Hao, CAO Limin, GUO Xuhui, CHEN Lijian, HAN Zhiyong. Carbon Emission and Carbon Peak Management Strategies for the Treatment and Disposal of Domestic Waste: Comparative Analysis Based on the Measured Data of Waste and Landfill Gas Production in Chengdu City [J]. Environmental Sanitation Engineering, 2024, 32(6): 10-19.
[7] DING Cong. Composition and Characteristics Analysis of Terminal Municipal Solid Waste of a City in South China in the Last Decade [J]. Environmental Sanitation Engineering, 2024, 32(5): 36-40.
[8] CHEN Mingxi, LU Yongming, WANG Jian, ZHANG Jin, WANG Xiaofeng, ZHOU Shun, GE Shaolin, LI Aimin, JI Guozhao. Research Progress on Reducing Harm and Tar Generation During Cigarette Combustion [J]. Environmental Sanitation Engineering, 2024, 32(5): 77-86.
[9] HUANG Hua, HUANG Zhengpeng, SHEN Yuanpeng, LI Nong. Study on Full Quantification Treatment Technology of Leachate in Municipal Solid Waste Incineration Plant [J]. Environmental Sanitation Engineering, 2024, 32(4): 78-82.
[10] HUANG Shujuan, LI Hang. Study on the Methodology and Implementation Conditions of Municipal Solid Waste Disposal Charge [J]. Environmental Sanitation Engineering, 2024, 32(4): 105-111.
[11] XU Wei, GAO Ting, YIN Jin. Characterization and Kinetic Analysis of Pyrolysis of Anaerobic Digestate from Kitchen Waste [J]. Environmental Sanitation Engineering, 2024, 32(1): 37-44.
[12] CHANG Keke, LI Jian, CHEN Guanyi, DAN Zeng. Characteristics of Municipal Solid Waste Gasification in Tibet Plateau [J]. Environmental Sanitation Engineering, 2023, 31(6): 16-21.
[13] QI Guangxia, LIU Zhengyang, XIA Yi, CHEN Sihan, HU Jinhui , REN Lianhai. The Impact of Physical Composition on the Composition and Emission Characteristics of Odorous Pollutants During Food Waste Composting [J]. Environmental Sanitation Engineering, 2023, 31(6): 54-62.
[14] LI Bo, GAO Lei, RU Chunyun, HAN Zhiming, LIU Yukun. Simulation of MSWI Fly Ash Washing Process and Calculation of Washing Loss Rate [J]. Environmental Sanitation Engineering, 2023, 31(6): 80-84.
[15] HE Weiyu. Analysis of Greenhouse Gas Reduction Opportunities in Municipal Solid Waste Disposal Industry [J]. Environmental Sanitation Engineering, 2023, 31(5): 9-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
Copyright © Environmental Sanitation Engineering
Address: 107#, Weidi Road, Tianjin, P.R.C.    Postcode: 300201
Telephone: 022-28365069   Fax: 022-28365080 E-mail: csglwyjs10@tj.gov.cn
Supported by:Beijing Magtech