环境卫生工程 ›› 2025, Vol. 33 ›› Issue (3): 107-113.doi: 10.19841/j.cnki.hjwsgc.2025.03.015

• 热化学处理与烟气污染控制 • 上一篇    下一篇

基于MIC-BiLSTM的垃圾焚烧炉SNCR脱硝系统动态建模

宋向楠,高 山,王文杰,王 强,花 强   

  1. 1. 中城院(北京)环境科技股份有限公司;2.西咸新区北控环保科技发展有限公司
  • 出版日期:2025-07-01 发布日期:2025-07-01

Dynamic Modeling of SNCR Denitrification System for Waste Incinerator Based on MIC-BiLSTM

SONG Xiangnan, GAO Shan, WANG Wenjie, WANG Qiang, HUA Qiang   

  1. 1.CUCDE Environmental Technology Co.Ltd.; 2.Xixian New Area Beikong Environmental Protection Technology Development Co. Ltd.
  • Online:2025-07-01 Published:2025-07-01

摘要: 针对垃圾焚烧炉选择性非催化还原(SNCR)脱硝系统反应时滞性大、化学反应复杂和影响出口NOx因素多等问题,提出了一种基于最大信息系数-双向长短期记忆网络的SNCR脱硝系统动态建模方法。首先通过分析SNCR脱硝机理与影响因素,初选与出口NOx相关的变量;接着基于最大信息系数算法选择与出口NOx相关性强的变量同时去除冗余变量;然后利用滑动窗口法和最大信息系数算法进行数据迟延估计,完成数据重构工作;最后基于双向长短期记忆网络深度学习算法构建SNCR脱硝系统动态模型。结果表明:经过变量筛选和迟延估计后的动态模型的准确性得到显著提升,模型的平均绝对百分比误差(MAPE)约为8.62%,并且和BPNN、LSTM、GRU模型相比,分别下降18.6%、18.1%和12.5%,因此该建模方法具有更高精度和更出色的拟合效果,能更有效地应用于实际现场。

关键词: 选择性非催化还原, 最大信息系数, 双向长短期记忆网络, NOx, 动态建模

Abstract: To address the issues of large time delays, complex chemical reactions, and multiple influencing factors on the outlet NOx concentration in the selective non-catalytic reduction (SNCR) denitrification system for waste incinerators, a dynamic modeling method based on maximum information coefficient (MIC) and bi-directional long short-term memory network was proposed. Firstly, by analyzing the SNCR denitrification mechanism and influencing factors, the variables related to outlet NOx were preliminarily selected. Then, based on the MIC algorithm, variables with strong correlation with outlet NOx were selected and redundant variables were removed. Next, the sliding window method and MIC algorithm were used for data delay estimation to complete the data reconstruction. Finally, a dynamic model of the SNCR denitrification system was built based on the bi-directional long short-term memory deep learning algorithm.The results showed that after variable screening and delay estimation, the accuracy of the dynamic model was significantly improved, and the average absolute percentage error of the model was approximately 8.62%, which decreased by 18.6%, 18.1% and 12.5% compared with the BPNN, LSTM and GRU models, respectively. Therefore, this modeling method has higher precision and better fitting effect, which can be more effectively applied to the actual field.

Key words: selective non-catalytic reduction, maximum information coefficient, bi-directional long short-term memory network; NOx; dynamic modeling

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 天津市城市管理研究中心
津ICP备2022007900号-1   津公网安备 12010302000952号   中央网信办违法和不良信息举报中心
地址:天津市河西区围堤道107号    邮政编码: 300201
电话: 022-28365069 传真: 022-28365080 E-mail: csglwyjs10@tj.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发