Environmental Sanitation Engineering ›› 2023, Vol. 31 ›› Issue (3): 38-43.doi: 10.19841/j.cnki.hjwsgc.2023.03.006

Previous Articles     Next Articles

Study on Chelation Stabilization of Fly Ash Produced by MSW Co-incineration with Municipal Sludge

LONG Jisheng, ZHANG Yiyang, RUAN Danian, HU Fali   

  1. Shanghai SUS Environment Co. Ltd.
  • Online:2023-07-03 Published:2023-07-03

Abstract: The fly ash from the co-incineration of municipal sludge in the grate furnace of a MSWI was used as an experimental sample. The total amount of heavy metals and leaching characteristics of fly ash produced by mixing sludge were analyzed and compared. The results showed that compared with zero mixing firing, co-incineration of municipal sludge reduced the total amount of heavy metals in fly ash, while the residual alkalinity of fly ash was significantly reduced because the SOx produced by mixing sludge consumed alkaline agents, leading to the low leaching pH of 5.27. The corresponding leaching concentration of heavy metals such as Pb and Cd was much higher than the limits of GB 16889—2008 Standard for Pollution Control on the Landfill Site of Municipal Solid Waste. Addition of 10% limestone into fly ash could increased the residual alkalinity, indicated by a higher leaching pH of 6.32 and the leaching concentrations of Pb,Zn,Cd,As were lower than the limits of GB 16889—2008. While mixing the sludge, the amount of deacidification agent feed into the flue gas purification system was suggested to be flexibly adjusted, which would contribute to the leaching stability of fly ash.

Key words: waste incineration, co-incineration of sludge, fly ash, the leaching of heavy metal

[1] QIU Qingwen. Suggestions on Geotechnical Engineering Design of Domestic Waste Incineration Fly Ash Landfill [J]. Environmental Sanitation Engineering, 2025, 33(3): 64-69.
[2] HU Honglei, LONG Jisheng, WU Yazhong. Corrosion Causes and Optimization Scheme for Flue Gas Recirculation Equipment in Waste to Energy Incineration Plants [J]. Environmental Sanitation Engineering, 2025, 33(3): 97-101.
[3] DUAN Panqiao, LI Yaxin, BAI Liangcheng. White Smoke Generation Source and Control in Domestic Waste Incineration Plants [J]. Environmental Sanitation Engineering, 2025, 33(3): 102-106,113.
[4] QI Xiaobo, YI Peng, MA Yunfeng, LIN Xiaoqing. Study on the Combustion Characteristics of Municipal Solid Waste Influenced by Large Proportion of Typical Industrial Solid Waste in a Solid Waste Incinerator [J]. Environmental Sanitation Engineering, 2025, 33(2): 1-11.
[5] FU Kai, BAI Xu, SHI Jiayu, QIAN Xinxin, LIU Lu, ZHOU Yaqian, WANG Heli. Calculation of Greenhouse Gas Emission from Domestic Waste Incineration Based on the Entire Process [J]. Environmental Sanitation Engineering, 2025, 33(2): 12-18.
[6] LIU Zixing, WANG Yanming, WANG Shihao, NIE Jianwen, XUE Xiao, GAO Bin. Preliminary Exploration for MSWI Fly Ash by the Detoxification Processes of Acid Washing Reduction and Low Temperature Pyrolysis [J]. Environmental Sanitation Engineering, 2025, 33(1): 103-109.
[7] DUAN Feifei, ZHU Chuanqiang, YANG Lin, HU Mingdong, YIN Xiaolong, HAN Hao. Research on the Integrated Process of Desulfurization and Denitrification in a Large-capacity Waste Incinerator [J]. Environmental Sanitation Engineering, 2024, 32(6): 64-69.
[8] GONG Yue. Research and Application of Shock Pulse Generators Ash Cleaning Technology for Waste Incineration Boiler Heating Surface [J]. Environmental Sanitation Engineering, 2024, 32(6): 74-79.
[9] GAN Jie, LIU Hao, LI Jianhui. Comparative Analysis of Discharge and Regulatory Standards on Effluents from Waste Incineration Plants in China and Developed Countries [J]. Environmental Sanitation Engineering, 2024, 32(5): 11-16.
[10] YU Yaping. Technical and Economic Analysis of Sludge Incineration Flue Gas Deacidification Process [J]. Environmental Sanitation Engineering, 2024, 32(5): 87-92.
[11] LYU Yejia, ZHANG Jia, YUE Yang, QIAN Guangren. Progress and Prospect of Deep Recycling Technology for Incineration Fly Ash [J]. Environmental Sanitation Engineering, 2024, 32(4): 1-8.
[12] TIAN Wei, CHEN Cong, PENG Li, CHEN Yucheng. Pollution Characterization and Environmental Risk Assessment of Heavy Metal of Waste Incineration Fly Ash and its Solidified / Stabilized Products [J]. Environmental Sanitation Engineering, 2024, 32(4): 9-16.
[13] CHEN Lu, YANG Dekun, LONG Jisheng. Study on Synergistic Removal Characteristics of Multiple Pollutants in Domestic Waste Incineration Plant by Integrated Flue Gas Purification Process [J]. Environmental Sanitation Engineering, 2024, 32(4): 51-57.
[14] WANG Yantao, LONG Jisheng, QIN Feng. Statistical Analysis of Design Parameters and Incineration Load Variation of Waste Incineration Power Plant [J]. Environmental Sanitation Engineering, 2024, 32(4): 58-62,71.
[15] HUANG Hua, HUANG Zhengpeng, SHEN Yuanpeng, LI Nong. Study on Full Quantification Treatment Technology of Leachate in Municipal Solid Waste Incineration Plant [J]. Environmental Sanitation Engineering, 2024, 32(4): 78-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
Copyright © Environmental Sanitation Engineering
Address: 107#, Weidi Road, Tianjin, P.R.C.    Postcode: 300201
Telephone: 022-28365069   Fax: 022-28365080 E-mail: csglwyjs10@tj.gov.cn
Supported by:Beijing Magtech