Environmental Sanitation Engineering ›› 2024, Vol. 32 ›› Issue (1): 111-115.doi: 10.19841/j.cnki.hjwsgc.2024.01.016

Previous Articles     Next Articles

Caculation of Carbon Emission During Co-composting of Food Waste and Agricultural Waste and Garden Waste: A Case Study of A Treatment Facility in Town

ZHU Yuanchao,ZHAO Zimin,ZHANG Jinsong   

  1. 1. Beijing Municipal Institute of City Management; 2. Beijing Key Laboratory of Municipal Solid Waste Detection Analysis and Evaluation
  • Online:2024-03-01 Published:2024-03-01

Abstract: A co-aerobic composting treatment facility for food waste and agricultural waste and garden waste in a town in North China was taken as an example, the emission factor method was used to calculate the carbon emissions from collection, transportation, treatment and resource utilization. The carbon emissions were 143.71 kgCO2/t. The results showed that the carbon emissions in the collection and transportation stage were 1.04 kgCO2/t, which was lower than transporting to a centralized treatment facility. The direct carbon emissions in the treatment stage were 193.50 kgCO2/t. The unorganized escape of CH4 and N2O produced in the aerobic composting process was the key factor affected its carbon emissions level. The indirect carbon emissions in the treatment stage were 4.16 kgCO2/t, and the carbon emissions from equipment energy consumption were lower than the process of using heating and oxygen-supply equipment. The carbon reduction of compost products was 55 kgCO2/t, with obvious carbon reduction effects. Therefore, measures should be taken to reduce direct carbon emissions by maintaining the oxygen content of the heap at no less than 8%, the moisture content of 50% to 65%, the reaction temperature was above 55 ℃, and increasing closed auxiliary facilities, regularly turning operations, and ensuring sufficient composting time.

Key words: food waste, co-aerobic composting, carbon emissions, emission factor method

[1] WANG Huihui, WANG Ling, ZHU Minhang, LIAN Songjian. Analysis on Current Situation and Processing Costs of Food Waste Treatment Facilities in China [J]. Environmental Sanitation Engineering, 2025, 33(3): 12-18.
[2] WANG Yujie, QIU Junjie, LYU Fan, ZHANG Hua, HE Pinjing. Bottlenecks in Scaling up Lactate-mediated Carbon Chain Elongation for Caproate Production [J]. Environmental Sanitation Engineering, 2025, 33(3): 27-36,48.
[3] XIA Qing, XU Xiaojian, ZHANG Yuting, ZHOU Chengya, LIU Haichun. Occurrence Characteristic and Risk Assessment of Heavy Metals in Yangzhou Household Food Waste [J]. Environmental Sanitation Engineering, 2025, 33(2): 50-54.
[4] WANG Yiran, MENG Xingyao, LI Jinglin, WANG Pan, REN Lianhai. Research Status of Malodorous Gas Emissions During the Aerobic Composting Process of Food Waste [J]. Environmental Sanitation Engineering, 2025, 33(1): 40-49,56.
[5] ZHOU Baiyu, REN Yi, DU Chunyan, ZHU Hao, CAO Limin, GUO Xuhui, CHEN Lijian, HAN Zhiyong. Carbon Emission and Carbon Peak Management Strategies for the Treatment and Disposal of Domestic Waste: Comparative Analysis Based on the Measured Data of Waste and Landfill Gas Production in Chengdu City [J]. Environmental Sanitation Engineering, 2024, 32(6): 10-19.
[6] LI Guoqing. Optimization of Breeding and Economic Benefit Analysis Based on Self-supply of Black Soldier Fly Eggs [J]. Environmental Sanitation Engineering, 2024, 32(6): 50-56.
[7] SHANG Yijun, LI Xunan, LIU Yan, CHEN Yongjie, YUAN Wei, LU Jianhong. Research Progress on the Growth and Reduction of Antibiotic Resistance Genes in Aerobic Compost of Food Waste [J]. Environmental Sanitation Engineering, 2024, 32(6): 80-89.
[8] LI Jianying, REN Xiaoling, WANG Xiaoyan, LAI Jinli. Analysis and Research on Carbon Emissions Throughout the Life Cycle of Biodiesel Production from Kitchen Waste Oils and Fats [J]. Environmental Sanitation Engineering, 2024, 32(5): 48-54.
[9] ZHANG Li, LI Ke, ZHU Yaping, WU Yuan, YANG Hujun. Preparation of Carbon Source by Food Waste Dish Separation and Its Application [J]. Environmental Sanitation Engineering, 2024, 32(5): 62-66.
[10] ZHOU Yongquan, LI Xiaowei, TAI Jun. The Effects of Low-dosage Paper Addition on Co-Digestion of Food Waste and Kitchen Waste [J]. Environmental Sanitation Engineering, 2024, 32(4): 36-43.
[11] OUYANG Chuang, ZHANG Yurong, TAI Jun, XU Xianbao, XUE Gang, LI Xiang. Comparative Study on Anaerobic Digestion of Food Waste Enhanced by Biogas Residue Hydrochar and Biogas Residue Pyrochar [J]. Environmental Sanitation Engineering, 2024, 32(3): 47-53.
[12] JIANG Yu, TAN Yaoyao, LI Dong, DENG Fang, CHEN Qiong, ZHENG Xiaoqian. Characteristics of Greenhouse Gas Emissions and Emission Reduction Strategies in the Field of Urban Management in Chengdu [J]. Environmental Sanitation Engineering, 2024, 32(2): 85-92.
[13] LIU Yanjun, TANG Qiange, WANG Sheng, LI Zhenkun, WANG Jianbing. Release Characteristics and Health Risks of Bioaerosol from Initial Degradation of Campus Food Waste [J]. Environmental Sanitation Engineering, 2024, 32(1): 57-67.
[14] ZHANG Dong. Analysis of Carbon Emissions in Different Treatment Process of Three-phase Organic Residues from Food Waste [J]. Environmental Sanitation Engineering, 2024, 32(1): 104-109.
[15] DU Xuexun, SHI Jingjing, ZHANG Siying. Study on Bioaugmentation to Promote Methanogenic Performance of Thermophilic Anaerobic Digestion of Food Waste [J]. Environmental Sanitation Engineering, 2023, 31(6): 46-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
Copyright © Environmental Sanitation Engineering
Address: 107#, Weidi Road, Tianjin, P.R.C.    Postcode: 300201
Telephone: 022-28365069   Fax: 022-28365080 E-mail: csglwyjs10@tj.gov.cn
Supported by:Beijing Magtech