环境卫生工程 ›› 2023, Vol. 31 ›› Issue (3): 38-43.doi: 10.19841/j.cnki.hjwsgc.2023.03.006

• 危险废物利用、处理与处置 • 上一篇    下一篇

生活垃圾掺烧市政污泥产生飞灰的螯合稳定化研究

龙吉生,张毅扬,阮大年,胡发立   

  1. 上海康恒环境股份有限公司
  • 出版日期:2023-07-03 发布日期:2023-07-03

Study on Chelation Stabilization of Fly Ash Produced by MSW Co-incineration with Municipal Sludge

LONG Jisheng, ZHANG Yiyang, RUAN Danian, HU Fali   

  1. Shanghai SUS Environment Co. Ltd.
  • Online:2023-07-03 Published:2023-07-03

摘要: 以我国某垃圾焚烧电厂炉排炉掺烧市政污泥产生的飞灰作为试验样本,对掺烧污泥产生飞灰的重金属总量与浸出特性进行了分析比较。结果表明:与零掺烧相比,掺烧市政污泥虽然减少了飞灰中重金属的总量,但污泥掺烧产生的SOx消耗了碱性药剂使得飞灰的残留碱度明显下降,相应浸出pH低至5.27,Pb、Cd等重金属浸出浓度远高于GB 16889—2008 生活垃圾填埋场污染控制标准限值。对掺烧污泥产生的飞灰添加10%的消石灰,可提高飞灰残留碱度,浸出pH提高至6.32,Pb、Zn、Cd、As浸出浓度均低于GB 16889—2008。因此在掺烧污泥的同时对烟气净化系统的脱酸药剂添加量进行灵活调整,对提高飞灰浸出稳定性有积极作用。

关键词: 垃圾焚烧, 污泥协同掺烧, 飞灰, 重金属浸出

Abstract: The fly ash from the co-incineration of municipal sludge in the grate furnace of a MSWI was used as an experimental sample. The total amount of heavy metals and leaching characteristics of fly ash produced by mixing sludge were analyzed and compared. The results showed that compared with zero mixing firing, co-incineration of municipal sludge reduced the total amount of heavy metals in fly ash, while the residual alkalinity of fly ash was significantly reduced because the SOx produced by mixing sludge consumed alkaline agents, leading to the low leaching pH of 5.27. The corresponding leaching concentration of heavy metals such as Pb and Cd was much higher than the limits of GB 16889—2008 Standard for Pollution Control on the Landfill Site of Municipal Solid Waste. Addition of 10% limestone into fly ash could increased the residual alkalinity, indicated by a higher leaching pH of 6.32 and the leaching concentrations of Pb,Zn,Cd,As were lower than the limits of GB 16889—2008. While mixing the sludge, the amount of deacidification agent feed into the flue gas purification system was suggested to be flexibly adjusted, which would contribute to the leaching stability of fly ash.

Key words: waste incineration, co-incineration of sludge, fly ash, the leaching of heavy metal

[1] 邱清文. 生活垃圾焚烧飞灰填埋场岩土工程设计建议[J]. 环境卫生工程, 2025, 33(3): 64-69.
[2] 胡洪磊, 龙吉生, 吴亚中. 垃圾焚烧项目烟气再循环设备腐蚀原因与优化方案[J]. 环境卫生工程, 2025, 33(3): 97-101.
[3] 段盼巧, 李雅昕, 白良成. 生活垃圾焚烧厂白烟来源及控制研究[J]. 环境卫生工程, 2025, 33(3): 102-106,113.
[4] 戚晓波, 易 鹏, 马云峰, 林晓青. 大比例掺烧典型工业固废对生活垃圾焚烧炉燃烧特性的影响研究[J]. 环境卫生工程, 2025, 33(2): 1-11.
[5] 付 铠, 白 旭, 史佳雨, 钱鑫鑫, 刘 璐, 周亚倩, 王鹤立. 基于全流程的生活垃圾焚烧温室气体排放核算[J]. 环境卫生工程, 2025, 33(2): 12-18.
[6] 刘自兴, 王艳明, 王世豪, 聂剑文, 薛 骁, 高 斌. 飞灰酸洗减量化及低温热解解毒工艺初探[J]. 环境卫生工程, 2025, 33(1): 103-109.
[7] 段飞飞, 朱传强, 杨 林, 扈明东, 尹晓龙, 韩 昊. 大容量垃圾焚烧炉内脱硫脱硝一体化工艺研究[J]. 环境卫生工程, 2024, 32(6): 64-69.
[8] 龚 越. 面向垃圾焚烧余热锅炉受热面的超频震波清灰技术应用与研究[J]. 环境卫生工程, 2024, 32(6): 74-79.
[9] 甘 洁, 刘 豪, 李建辉. 国内外生活垃圾焚烧厂的水排放与监管标准比较分析[J]. 环境卫生工程, 2024, 32(5): 11-16.
[10] 余亚萍. 污泥焚烧烟气脱酸工艺技术经济分析[J]. 环境卫生工程, 2024, 32(5): 87-92.
[11] 吕烨佳, 张 佳, 岳 阳, 钱光人. 焚烧飞灰深度资源化技术进展及展望(封面文章)[J]. 环境卫生工程, 2024, 32(4): 1-8.
[12] 田 伟, 陈 琮, 彭 莉, 陈玉成. 垃圾焚烧飞灰及其固化/稳定化产物的重金属污染特征及环境风险评估[J]. 环境卫生工程, 2024, 32(4): 9-16.
[13] 陈 璐, 杨德坤, 龙吉生. 一体化烟气净化工艺对生活垃圾焚烧厂多污染物协同脱除特性的研究[J]. 环境卫生工程, 2024, 32(4): 51-57.
[14] 王延涛, 龙吉生, 秦 峰. 生活垃圾焚烧发电厂设计参数与焚烧负荷变化的统计分析[J]. 环境卫生工程, 2024, 32(4): 58-62,71.
[15] 黄 华, 黄正鹏, 沈元鹏, 李 浓. 生活垃圾焚烧厂渗滤液全量化处理技术研究[J]. 环境卫生工程, 2024, 32(4): 78-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 天津市城市管理研究中心
津ICP备2022007900号-1   津公网安备 12010302000952号   中央网信办违法和不良信息举报中心
地址:天津市河西区围堤道107号    邮政编码: 300201
电话: 022-28365069 传真: 022-28365080 E-mail: csglwyjs10@tj.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发