垃圾焚烧炉排炉,人工智能,深度学习,神经网络,时间序列预测 ," />

垃圾焚烧炉排炉,人工智能,深度学习,神经网络,时间序列预测 ,"/> Grate-type waste incinerator, Artificial intelligence, Deep learning, Neural network, Time series prediction

 , ,"/> <p class="MsoNormal"> <span>基于时间序列神经网络模型预测垃圾焚烧炉运行参数的研究</span>

环境卫生工程

• •    下一篇

基于时间序列神经网络模型预测垃圾焚烧炉运行参数的研究

  

  1. 中节能环境保护股份有限公司,清华大学能源与动力工程系

Research on Operational Parameter Prediction of Waste Incinerators Based on Time Series Neural Network Model

  1. CECEP Environmental Protection Co., Ltd., Department of Energy and Power Engineering, Tsinghua University

摘要:

在当前双碳战略的环保背景下,融合人工智能、大数据和云计算等技术实现城市固废焚烧发电的智能化、绿色化和低碳化是目前面临的挑战性难题。该研究采用互相关法对垃圾焚烧炉的110个变量进行相关性分析,得出与主蒸汽流量、炉膛平均温度和平均含氧量等3个被预测变量相关性的变量。并据相关性分析结果,计算出主蒸汽流量、炉膛平均温度和平均含氧量等3个被预测变量与设备控制参数的时间延迟步长。利用4种时间序列预测模型对主蒸汽流量、炉膛平均温度和平均含氧量进行预测,模型比较结果显示,PatchTST在测试集上预测误差最低(主蒸汽流量NMAE=0.0729,炉膛平均温度NMAE=0.0560,平均含氧量NMAE=0.1406,具有较好的泛化能力和预测能力,能较好地消除数据的时滞性,降低操作员主观能力判断引起的误差,为实时在线操作提供数据支撑。

关键词:

垃圾焚烧炉排炉')">

垃圾焚烧炉排炉, 人工智能, 深度学习, 神经网络, 时间序列预测

Abstract:

Against the current environmental backdrop of the "dual carbon goals," integrating technologies like artificial intelligence ( AI), big data, and cloud computing to achieve intelligent, green, and low-carbon municipal solid waste (MSW) incineration for power generation presents a significant challenge. This study employed the cross-correlation method to analyze the correlations among 110 variables in a waste incinerator. The analysis identified variables exhibiting strong correlations with three key predicted variables: Main Steam Flow, Average Furnace Temperature, and Average Oxygen Content. Based on this correlation analysis, the time delay steps between these three predicted variables (Main Steam Flow, Average Furnace Temperature, Average Oxygen Content) and the equipment control parameters were calculated. Four time-series forecasting models were then utilized to predict the Main Steam Flow, Average Furnace Temperature, and Average Oxygen Content. The results demonstrate that the PatchTST time-series forecasting model exhibits superior generalization and predictive capabilities. Trained on actual operational data, it effectively addresses data time delays and reduces errors stemming from subjective operator judgments. This approach provides robust data support for real-time online operations.

Key words: Grate-type waste incinerator')">

Grate-type waste incinerator, Artificial intelligence, Deep learning, Neural network,  ')"> Time series prediction

 ,

[1] 许亚如, 陶俊宇, 梁 蕊, 程占军, 颜蓓蓓, 陈冠益. 机器学习在建筑垃圾处理领域的应用与现状[J]. 环境卫生工程, 2024, 32(2): 10-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 天津市城市管理研究中心
津ICP备2022007900号-1   津公网安备 12010302000952号   中央网信办违法和不良信息举报中心
地址:天津市河西区围堤道107号    邮政编码: 300201
电话: 022-28365069 传真: 022-28365080 E-mail: csglwyjs10@tj.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发