环境卫生工程 ›› 2020, Vol. 28 ›› Issue (6): 66-70.

• 热化学处理与烟气污染控制 • 上一篇    下一篇

催化剂对废轮胎热解特性影响研究

柳培文1,徐小刚2,吴 玥3   

  1. 1. 南通市海安生态环境局2. 南通市海安生态环境监测站3. 江苏天楹工程设计有限公司
  • 出版日期:2020-12-30 发布日期:2020-12-30

  • Online:2020-12-30 Published:2020-12-30

摘要: 以废轮胎胶粉为研究对象,采用热重法分析其热解过程及升温速率对热解特性的影响,利用固定床反应器探究其温度和催化剂对热解产物分布的影响规律。结果表明:当热解温度为304~497 ℃时,热解过程反应剧烈,且随着升温速率的增加,热解曲线向高温区偏移,并伴随热滞后现象;当温度达到550 ℃时,基本完全热解,根据反应条件,当热解温度为550 ℃、添加15%Fe2O3时,热解气产率最大,为19.4%;当热解温度为550 ℃、添加10%NaOH时,热解油产率最大,为48.5%;当热解温度为550 ℃、添加10%CaCl2时,热解炭产率最大,为51.4%。此外,催化剂的加入可有效促进小分子气体生成,降低H2S含量,CaO的脱硫效果最好,NaOH能够明显提高气体中H2和CH4的含量。

Abstract: Taking rubber powder of waste tire as the research object, the influence of its pyrolysis process and the heating rate on the pyrolysis characteristics was analyzed by the thermogravimetric method, and the influence rule of its temperature and catalyst on the distribution of pyrolysis products was studied by fixed bed reactor. The results showed that the pyrolysis process reacted violently when the temperature between 304 ℃ and 497 ℃. With the increase of the heating rate, the pyrolysis curve shifted to the high temperature region accompanied by thermal hysteresis. When the temperature reached 550 ℃, the pyrolysis process was basically completed. According to the reaction conditions, with 15%Fe2O3 added at 550 ℃, the pyrolysis gas yield reached the maximum of 19.4%. While with 10%NaOH added at 550 ℃, pyrolysis oil yield reached the maximum of 48.5%. When the pyrolysis temperature was 550 ℃ and 10%CaCl2 was added, the pyrolysis carbon yield reached the maximum of 51.4%. In addition, the addition of catalyst could effectively promote the formation of small molecular gas and reduce H2S content. CaO had the best desulfurization effect, and NaOH could significantly increase the content of H2 and CH4 in the gas. 

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨 龑 陈海滨 杨 禹 等. 基于F-measure的生活垃圾分类效果评价指标优化研究[J]. 环境卫生工程, 2018, 26(3): 1 -3 .
[2] 陈美珠. 广州市提高生活垃圾分类效果的探索与研究[J]. 环境卫生工程, 2018, 26(3): 4 -7 .
[3] 胡鑫鑫. 杭州市餐厨垃圾预处理技术的应用[J]. 环境卫生工程, 2018, 26(3): 8 -10 .
[4] 赖后伟 喻友华 陈 浩 等. 我国村镇生活垃圾简易填埋场特点及治理方案选择[J]. 环境卫生工程, 2018, 26(3): 11 -13 .
[5] 刘志永 郑泽华. 生活垃圾焚烧发电协同处置市政污泥技术研究——以衡阳市为例[J]. 环境卫生工程, 2018, 26(3): 14 -17 .
[6] 程 曦 朱 广 徐 辉 等. 生活垃圾焚烧炉渣的工程特性[J]. 环境卫生工程, 2018, 26(3): 18 -22 .
[7] 孔红. 生活垃圾焚烧厂SNCR脱硝系统的自动控制[J]. 环境卫生工程, 2018, 26(3): 23 -25 .
[8] 张静. 北京六里屯垃圾填埋场填埋气利用途径与效益分析[J]. 环境卫生工程, 2018, 26(3): 26 -28 .
[9] 鲁晓菊 杨 迪 姚俊花. 太原市生活垃圾热值影响因素研究[J]. 环境卫生工程, 2018, 26(3): 29 -32 .
[10] 王占磊 陈 丽 刘兰英 等. 厌氧消化过程中氨氮的抑制浓度和消除方法[J]. 环境卫生工程, 2018, 26(3): 33 -35 .
版权所有 © 天津市城市管理研究中心
津ICP备2022007900号-1   津公网安备 12010302000952号   中央网信办违法和不良信息举报中心
地址:天津市河西区围堤道107号    邮政编码: 300201
电话: 022-28365069 传真: 022-28365080 E-mail: csglwyjs10@tj.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发